Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Flemming Scheutz is active.

Publication


Featured researches published by Flemming Scheutz.


The New England Journal of Medicine | 2011

Origins of the E. coli strain causing an outbreak of hemolytic-uremic syndrome in Germany.

David A. Rasko; Dale Webster; Jason W. Sahl; Ali Bashir; Nadia Boisen; Flemming Scheutz; Ellen E. Paxinos; Robert Sebra; Chen Shan Chin; Dimitris Iliopoulos; Aaron Klammer; Paul Peluso; Lawrence Lee; Andrey Kislyuk; James Bullard; Andrew Kasarskis; Susanna Wang; John Eid; David Rank; Julia C. Redman; Susan R. Steyert; Jakob Frimodt-Møller; Carsten Struve; Andreas Petersen; Karen A. Krogfelt; James P. Nataro; Eric E. Schadt; Matthew K. Waldor

BACKGROUND A large outbreak of diarrhea and the hemolytic-uremic syndrome caused by an unusual serotype of Shiga-toxin-producing Escherichia coli (O104:H4) began in Germany in May 2011. As of July 22, a large number of cases of diarrhea caused by Shiga-toxin-producing E. coli have been reported--3167 without the hemolytic-uremic syndrome (16 deaths) and 908 with the hemolytic-uremic syndrome (34 deaths)--indicating that this strain is notably more virulent than most of the Shiga-toxin-producing E. coli strains. Preliminary genetic characterization of the outbreak strain suggested that, unlike most of these strains, it should be classified within the enteroaggregative pathotype of E. coli. METHODS We used third-generation, single-molecule, real-time DNA sequencing to determine the complete genome sequence of the German outbreak strain, as well as the genome sequences of seven diarrhea-associated enteroaggregative E. coli serotype O104:H4 strains from Africa and four enteroaggregative E. coli reference strains belonging to other serotypes. Genomewide comparisons were performed with the use of these enteroaggregative E. coli genomes, as well as those of 40 previously sequenced E. coli isolates. RESULTS The enteroaggregative E. coli O104:H4 strains are closely related and form a distinct clade among E. coli and enteroaggregative E. coli strains. However, the genome of the German outbreak strain can be distinguished from those of other O104:H4 strains because it contains a prophage encoding Shiga toxin 2 and a distinct set of additional virulence and antibiotic-resistance factors. CONCLUSIONS Our findings suggest that horizontal genetic exchange allowed for the emergence of the highly virulent Shiga-toxin-producing enteroaggregative E. coli O104:H4 strain that caused the German outbreak. More broadly, these findings highlight the way in which the plasticity of bacterial genomes facilitates the emergence of new pathogens.


International Journal of Food Microbiology | 2010

Food-borne diseases - the challenges of 20 years ago still persist while new ones continue to emerge.

Diane G. Newell; Marion Koopmans; Linda Verhoef; Erwin Duizer; Awa Aidara-Kane; Hein Sprong; Marieke Opsteegh; Merel Langelaar; John Threfall; Flemming Scheutz; Joke van der Giessen; Hilde Kruse

Abstract The burden of diseases caused by food-borne pathogens remains largely unknown. Importantly data indicating trends in food-borne infectious intestinal disease is limited to a few industrialised countries, and even fewer pathogens. It has been predicted that the importance of diarrhoeal disease, mainly due to contaminated food and water, as a cause of death will decline worldwide. Evidence for such a downward trend is limited. This prediction presumes that improvements in the production and retail of microbiologically safe food will be sustained in the developed world and, moreover, will be rolled out to those countries of the developing world increasingly producing food for a global market. In this review evidence is presented to indicate that the microbiological safety of food remains a dynamic situation heavily influenced by multiple factors along the food chain from farm to fork. Sustaining food safety standards will depend on constant vigilance maintained by monitoring and surveillance but, with the rising importance of other food-related issues, such as food security, obesity and climate change, competition for resources in the future to enable this may be fierce. In addition the pathogen populations relevant to food safety are not static. Food is an excellent vehicle by which many pathogens (bacteria, viruses/prions and parasites) can reach an appropriate colonisation site in a new host. Although food production practices change, the well-recognised food-borne pathogens, such as Salmonella spp. and Escherichia coli, seem able to evolve to exploit novel opportunities, for example fresh produce, and even generate new public health challenges, for example antimicrobial resistance. In addition, previously unknown food-borne pathogens, many of which are zoonotic, are constantly emerging. Current understanding of the trends in food-borne diseases for bacterial, viral and parasitic pathogens has been reviewed. The bacterial pathogens are exemplified by those well-recognized by policy makers; i.e. Salmonella, Campylobacter, E. coli and Listeria monocytogenes. Antimicrobial resistance in several bacterial food-borne pathogens (Salmonella, Campylobacter, Shigella and Vibrio spp., methicillin resistant Staphylcoccus aureas, E. coli and Enterococci) has been discussed as a separate topic because of its relative importance to policy issues. Awareness and surveillance of viral food-borne pathogens is generally poor but emphasis is placed on Norovirus, Hepatitis A, rotaviruses and newly emerging viruses such as SARS. Many food-borne parasitic pathogens are known (for example Ascaris, Cryptosporidia and Trichinella) but few of these are effectively monitored in foods, livestock and wildlife and their epidemiology through the food-chain is poorly understood. The lessons learned and future challenges in each topic are debated. It is clear that one overall challenge is the generation and maintenance of constructive dialogue and collaboration between public health, veterinary and food safety experts, bringing together multidisciplinary skills and multi-pathogen expertise. Such collaboration is essential to monitor changing trends in the well-recognised diseases and detect emerging pathogens. It will also be necessary understand the multiple interactions these pathogens have with their environments during transmission along the food chain in order to develop effective prevention and control strategies.


Journal of Clinical Microbiology | 2012

Multicenter Evaluation of a Sequence-Based Protocol for Subtyping Shiga Toxins and Standardizing Stx Nomenclature

Flemming Scheutz; Louise D. Teel; Lothar Beutin; Denis Piérard; Glenn Buvens; Helge Karch; Alexander Mellmann; Alfredo Caprioli; Rosangela Tozzoli; Stefano Morabito; Nancy A. Strockbine; Angela R. Melton-Celsa; Maria Carmen Arroyo Sanchez; Søren Persson; Alison D. O'Brien

ABSTRACT When Shiga toxin-producing Escherichia coli (STEC) strains emerged as agents of human disease, two types of toxin were identified: Shiga toxin type 1 (Stx1) (almost identical to Shiga toxin produced by Shigella dysenteriae type 1) and the immunologically distinct type 2 (Stx2). Subsequently, numerous STEC strains have been characterized that express toxins with variations in amino acid sequence, some of which confer unique biological properties. These variants were grouped within the Stx1 or Stx2 type and often assigned names to indicate that they were not identical in sequence or phenotype to the main Stx1 or Stx2 type. A lack of specificity or consistency in toxin nomenclature has led to much confusion in the characterization of STEC strains. Because serious outcomes of infection have been attributed to certain Stx subtypes and less so with others, we sought to better define the toxin subtypes within the main Stx1 and Stx2 types. We compared the levels of relatedness of 285 valid sequence variants of Stx1 and Stx2 and identified common sequences characteristic of each of three Stx/Stx1 and seven Stx2 subtypes. A novel, simple PCR subtyping method was developed, independently tested on a battery of 48 prototypic STEC strains, and improved at six clinical and research centers to test the reproducibility, sensitivity, and specificity of the PCR. Using a consistent schema for nomenclature of the Stx toxins and stx genes by phylogenetic sequence-based relatedness of the holotoxin proteins, we developed a typing approach that should obviate the need to bioassay each newly described toxin and that predicts important biological characteristics.


Journal of Clinical Microbiology | 2014

Real-Time Whole-Genome Sequencing for Routine Typing, Surveillance, and Outbreak Detection of Verotoxigenic Escherichia coli

Katrine Grimstrup Joensen; Flemming Scheutz; Ole Lund; Henrik Hasman; Rolf Sommer Kaas; Eva Møller Nielsen; Frank Møller Aarestrup

ABSTRACT Fast and accurate identification and typing of pathogens are essential for effective surveillance and outbreak detection. The current routine procedure is based on a variety of techniques, making the procedure laborious, time-consuming, and expensive. With whole-genome sequencing (WGS) becoming cheaper, it has huge potential in both diagnostics and routine surveillance. The aim of this study was to perform a real-time evaluation of WGS for routine typing and surveillance of verocytotoxin-producing Escherichia coli (VTEC). In Denmark, the Statens Serum Institut (SSI) routinely receives all suspected VTEC isolates. During a 7-week period in the fall of 2012, all incoming isolates were concurrently subjected to WGS using IonTorrent PGM. Real-time bioinformatics analysis was performed using web-tools (www.genomicepidemiology.org) for species determination, multilocus sequence type (MLST) typing, and determination of phylogenetic relationship, and a specific VirulenceFinder for detection of E. coli virulence genes was developed as part of this study. In total, 46 suspected VTEC isolates were characterized in parallel during the study. VirulenceFinder proved successful in detecting virulence genes included in routine typing, explicitly verocytotoxin 1 (vtx1), verocytotoxin 2 (vtx2), and intimin (eae), and also detected additional virulence genes. VirulenceFinder is also a robust method for assigning verocytotoxin (vtx) subtypes. A real-time clustering of isolates in agreement with the epidemiology was established from WGS, enabling discrimination between sporadic and outbreak isolates. Overall, WGS typing produced results faster and at a lower cost than the current routine. Therefore, WGS typing is a superior alternative to conventional typing strategies. This approach may also be applied to typing and surveillance of other pathogens.


Journal of Clinical Microbiology | 2007

Subtyping Method for Escherichia coli Shiga Toxin (Verocytotoxin) 2 Variants and Correlations to Clinical Manifestations

Søren Persson; Katharina E. P. Olsen; Steen Ethelberg; Flemming Scheutz

ABSTRACT Shiga toxin 2 (Stx2) from Shiga toxin-producing Escherichia coli (STEC) was subtyped by a method involving partial sequencing of the stxAB2 operon. Of 255 strains from the Danish STEC cohort, all 20 cases of hemolytic-uremic syndrome were associated with subtype Stx2 (11 cases), subtype Stx2c (1 case), or the two combined (8 cases).


Emerging Infectious Diseases | 2004

Virulence Factors for Hemolytic Uremic Syndrome, Denmark

Steen Ethelberg; Katharina E. P. Olsen; Flemming Scheutz; C. Jensen; Peter Schiellerup; Jørgen Engberg; Andreas Petersen; Bente Olesen; Peter Gerner-Smidt; Kåre Mølbak

We present an analysis of strain and patient factors associated with the development of bloody diarrhea and hemolytic uremic syndrome (HUS) among Shiga toxin-producing Escherichia coli (STEC) patients registered in Denmark in a 6-year period. Of 343 STEC patients, bloody diarrhea developed in 36.4% and HUS in 6.1%. In a multivariate logistic regression model, risk factors for bloody diarrhea were the eae and stx2 genes, O groups O157 and O103, and increasing age. Risk factors for HUS were presence of the stx2 (odds ratio [OR] 18.9) and eae (OR undefined) genes, being a child, and having bloody diarrhea. O group O157, although associated with HUS in a univariate analysis (OR 4.0), was not associated in the multivariate analysis (OR 1.1). This finding indicates that, rather than O group, the combined presence of the eae and stx2 genes is an important predictor of HUS.


Journal of Clinical Microbiology | 2005

Etiology of Diarrhea in Young Children in Denmark: a Case-Control Study

Bente Olesen; Jacob Neimann; Blenda Böttiger; Steen Ethelberg; Peter Schiellerup; C. Jensen; Morten Helms; Flemming Scheutz; Katharina E. P. Olsen; Karen A. Krogfelt; Eskild Petersen; Kåre Mølbak; Peter Gerner-Smidt

ABSTRACT Infectious gastroenteritis is one of the most common diseases in young children. To clarify the infectious etiology of diarrhea in Danish children less than 5 years of age, we conducted a 2-year prospective case-control study. Stools from 424 children with diarrhea and 870 asymptomatic age-matched controls were examined, and their parents were interviewed concerning symptoms. Rotavirus, adenovirus, and astrovirus were detected by enzyme-linked immunosorbent assay, and norovirus and sapovirus were detected by PCR. Salmonella, thermotolerant Campylobacter, Yersinia, Shigella, and Vibrio spp. were detected by standard methods. Shiga toxin-producing (STEC), attaching-and-effacing (A/EEC), enteropathogenic (EPEC), enterotoxigenic, enteroinvasive, and enteroaggregative Escherichia coli were detected by using colony hybridization with virulence gene probes and serotyping. Parasites were detected by microscopy. Overall, a potential pathogen was found in 54% of cases. More cases than controls were infected with rotavirus, Salmonella, norovirus, adenovirus, Campylobacter, sapovirus, STEC, classical EPEC, Yersinia, and Cryptosporidium strains, whereas A/EEC, although common, was not associated with illness. The single most important cause of diarrhea was rotavirus, which points toward the need for a childhood vaccine for this pathogen, but norovirus, adenovirus, and sapovirus were also major etiologies. Salmonella sp. was the most common bacterial pathogen, followed by Campylobacter, STEC, Yersinia, and classical EPEC strains. A/EEC not belonging to the classical EPEC serotypes was not associated with diarrhea, underscoring the importance of serotyping for the definition of EPEC.


Journal of Clinical Microbiology | 2001

Clinical Isolates of Non-O157 Shiga Toxin-Producing Escherichia coli: Serotypes, Virulence Characteristics, and Molecular Profiles of Strains of the Same Serotype

Marjut Eklund; Flemming Scheutz; Anja Siitonen

ABSTRACT All human Shiga toxin-producing Escherichia coli (STEC) non-O157 strains (n = 56) isolated in Finland from 1990 to August 2000 were characterized for the O:H serotype,stx1 and stx2 genes, production of enterohemolysin, and sensitivity to 12 antimicrobial agents. Strains of the same serotype were genotyped by pulsed-field gel electrophoresis (PFGE) after XbaI restriction of total DNA. The 56 non-O157 isolates belonged to 29 serotypes. Two of the serotypes (O102:H7 and OX181:H49) have not previously been described as being associated with STEC infections in humans or isolated from animals. Thirty-four strains (61%) within seven serotypes (O103:H2 [14 isolates], O26:H11 [6 isolates], O145:H28 [4 isolates], O145:HNM [3 isolates], O15:HNM [3 isolates], OX174:H21 [2 isolates], and O Rough:HNM [2 isolates]) were represented by more than one isolate. Of these strains, O103:H2 isolates were divided into seven, O26:H11 isolates were divided into four, and the rest within a serotype were divided into two genotypes in PFGE. In PCR, 31 (55%) of the 56 strains were positive for the stx2 gene only and 24 strains (43%) were positive for stx1 only. One strain (O43:H2) carried both stx1 andstx2. Forty-two strains (75%) produced enterohemolysin, and 39 strains (70%) possessed the eaegene. Of the latter 39 strains, 36 (92%) were enterohemolytic, whereas only 6 (35%) of the 17 isolates lacking the eae gene were enterohemolytic (P < 0.001). The majority of the strains (44 strains, 79%) were sensitive to all 12 antimicrobials tested. Of the 56 strains, 20 (36%) were associated with small family outbreaks in nine families and 14 (25%) were associated with recent travel abroad.


Infection and Immunity | 2008

New Adhesin of Enteroaggregative Escherichia coli Related to the Afa/Dr/AAF Family

Nadia Boisen; Carsten Struve; Flemming Scheutz; Karen A. Krogfelt; James P. Nataro

ABSTRACT Enteroaggregative Escherichia coli (EAEC) is an important cause of diarrhea worldwide. We analyzed 17 Danish EAEC strains, isolated in the course of a case control study, for phenotypic and genotypic properties. The strains belonged to at least 14 different serotypes. Using PCR to investigate the prevalence of various putative virulence genes, we found that all but two strains were typical EAEC, as they harbored all or part of the previously described AggR regulon. The majority of the strains harbored genes encoding aggregative adherence fimbriae (AAF). The most common was AAF/I, found in nine strains; eight strains carried no known AAF-related genes. We utilized TnphoA mutagenesis to localize the aggregative adherence (AA) adhesin from one typical EAEC strain, C1010-00, which lacked a known AAF. We identified a TnphoA insertion in a hypothetical Dr-related pilin deposited in GenBank as HdaA. Four additional Danish strains harbored HdaA, and all but one displayed AA to HEp-2 cells. By using PCR primers derived from the pilins and ushers from the three AAF and Hda, we found that 16 of 17 strains exhibited evidence of one of these factors; importantly, the one negative strain also lacked the aggR gene. Cloning of the complete Hda gene cluster and expression in E. coli DH5α resulted in AA and complementation of the C1010-00 nonadherent mutant. Four related adhesins have now been found to confer AA in typical EAEC strains; our data suggest that, together, these variants may account for AA in the large majority of strains.


The Journal of Infectious Diseases | 2012

Genomic Characterization of Enteroaggregative Escherichia coli From Children in Mali

Nadia Boisen; Flemming Scheutz; David A. Rasko; Julia C. Redman; Søren Persson; Jakub K. Simon; Karen L. Kotloff; Myron M. Levine; Samba O. Sow; Boubou Tamboura; Aliou Toure; Dramane Malle; Sandra Panchalingam; Karen A. Krogfelt; James P. Nataro

Background. Enteroaggregative Escherichia coli (EAEC) is a cause of epidemic and sporadic diarrhea, yet its role as an enteric pathogen is not fully understood. Methods. We characterized 121 EAEC strains isolated in 2008 as part of a case-control study of moderate to severe acute diarrhea among children 0–59 months of age in Bamako, Mali. We applied multiplex polymerase chain reaction and comparative genome hybridization to identify potential virulence factors among the EAEC strains, coupled with classification and regression tree modeling to reveal combinations of factors most strongly associated with illness. Results. The gene encoding the autotransporter protease SepA, originally described in Shigella species, was most strongly associated with diarrhea among the EAEC strains tested (odds ratio, 5.6 [95% confidence interval, 1.92–16.17]; P = .0006). In addition, we identified 3 gene combinations correlated with diarrhea: (1) a clonal group positive for sepA and a putative hemolysin; (2) a group harboring the EAST-1 enterotoxin and the flagellar type H33 but no other previously identified EAEC virulence factor; and (3) a group carrying several of the typical EAEC virulence genes. Conclusion. Our data suggest that only a subset of EAEC strains are pathogenic in Mali and suggest that sepA may serve as a valuable marker for the most virulent isolates.

Collaboration


Dive into the Flemming Scheutz's collaboration.

Top Co-Authors

Avatar

Bente Olesen

University of Copenhagen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. Jensen

Statens Serum Institut

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge