Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fleur M. van der Valk is active.

Publication


Featured researches published by Fleur M. van der Valk.


Circulation | 2016

Oxidized Phospholipids on Lipoprotein(a) Elicit Arterial Wall Inflammation and an Inflammatory Monocyte Response in Humans

Fleur M. van der Valk; Siroon Bekkering; Jeffrey Kroon; Calvin Yeang; Jan Van den Bossche; Jaap D. van Buul; Amir Ravandi; Aart J. Nederveen; Hein J. Verberne; Corey A. Scipione; Max Nieuwdorp; Leo A. B. Joosten; Mihai G. Netea; Marlys L. Koschinsky; Joseph L. Witztum; Sotirios Tsimikas; Niels P. Riksen; Erik S.G. Stroes

Background: Elevated lipoprotein(a) [Lp(a)] is a prevalent, independent cardiovascular risk factor, but the underlying mechanisms responsible for its pathogenicity are poorly defined. Because Lp(a) is the prominent carrier of proinflammatory oxidized phospholipids (OxPLs), part of its atherothrombosis might be mediated through this pathway. Methods: In vivo imaging techniques including magnetic resonance imaging, 18F-fluorodeoxyglucose uptake positron emission tomography/computed tomography and single-photon emission computed tomography/computed tomography were used to measure subsequently atherosclerotic burden, arterial wall inflammation, and monocyte trafficking to the arterial wall. Ex vivo analysis of monocytes was performed with fluorescence-activated cell sorter analysis, inflammatory stimulation assays, and transendothelial migration assays. In vitro studies of the pathophysiology of Lp(a) on monocytes were performed with an in vitro model for trained immunity. Results: We show that subjects with elevated Lp(a) (108 mg/dL [50–195 mg/dL]; n=30) have increased arterial inflammation and enhanced peripheral blood mononuclear cells trafficking to the arterial wall compared with subjects with normal Lp(a) (7 mg/dL [2–28 mg/dL]; n=30). In addition, monocytes isolated from subjects with elevated Lp(a) remain in a long-lasting primed state, as evidenced by an increased capacity to transmigrate and produce proinflammatory cytokines on stimulation (n=15). In vitro studies show that Lp(a) contains OxPL and augments the proinflammatory response in monocytes derived from healthy control subjects (n=6). This effect was markedly attenuated by inactivating OxPL on Lp(a) or removing OxPL on apolipoprotein(a). Conclusions: These findings demonstrate that Lp(a) induces monocyte trafficking to the arterial wall and mediates proinflammatory responses through its OxPL content. These findings provide a novel mechanism by which Lp(a) mediates cardiovascular disease. Clinical Trial Registration: URL: http://www.trialregister.nl. Unique identifier: NTR5006 (VIPER Study).


Journal of the American College of Cardiology | 2014

Nonpharmacological Lipoprotein Apheresis Reduces Arterial Inflammation in Familial Hypercholesterolemia

Diederik F. van Wijk; Barbara Sjouke; Amparo L. Figueroa; Hamed Emami; Fleur M. van der Valk; Megan H. MacNabb; Linda C. Hemphill; Dominik M. Schulte; Marion G. Koopman; Mark E. Lobatto; Hein J. Verberne; Zahi A. Fayad; John J. P. Kastelein; Willem J. M. Mulder; G. Kees Hovingh; Ahmed Tawakol; Erik S.G. Stroes

BACKGROUND Patients with familial hypercholesterolemia (FH) are characterized by elevated atherogenic lipoprotein particles, predominantly low-density lipoprotein cholesterol (LDL-C), which is associated with accelerated atherogenesis and increased cardiovascular risk. OBJECTIVES This study used (18)F-fluorodeoxyglucose positron emission tomography ((18)FDG-PET) to investigate whether arterial inflammation is higher in patients with FH and, moreover, whether lipoprotein apheresis attenuates arterial wall inflammation in FH patients. METHODS In total, 38 subjects were recruited: 24 FH patients and 14 normolipidemic controls. All subjects underwent FDG-PET imaging at baseline. Twelve FH patients who met the criteria for lipoprotein apheresis underwent apheresis procedures followed by a second FDG-PET imaging 3 days (range 1 to 4 days) after apheresis. Subsequently, the target-to-background ratio (TBR) of FDG uptake within the arterial wall was assessed. RESULTS In FH patients, the mean arterial TBR was higher compared with healthy controls (2.12 ± 0.27 vs. 1.92 ± 0.19; p = 0.03). A significant correlation was observed between baseline arterial TBR and LDL-C (R = 0.37; p = 0.03) that remained significant after adjusting for statin use (β = 0.001; p = 0.02) and atherosclerosis risk factors (β = 0.001; p = 0.03). LDL-C levels were significantly reduced after lipoprotein apheresis (284 ± 118 mg/dl vs. 127 ± 50 mg/dl; p < 0.001). There was a significant reduction of arterial inflammation after lipoprotein apheresis (TBR: 2.05 ± 0.31 vs. 1.91 ± 0.33; p < 0.02). CONCLUSIONS The arterial wall of FH patients is characterized by increased inflammation, which is markedly reduced after lipoprotein apheresis. This lends support to a causal role of apoprotein B-containing lipoproteins in arterial wall inflammation and supports the concept that lipoprotein-lowering therapies may impart anti-inflammatory effects by reducing atherogenic lipoproteins.


Journal of Lipid Research | 2015

Effect of open-label infusion of an apoA-I-containing particle (CER-001) on RCT and artery wall thickness in patients with FHA

Ruud S. Kootte; Loek P. Smits; Fleur M. van der Valk; Jean-Louis Dasseux; Constance Keyserling; Ronald Barbaras; John F. Paolini; Raul D. Santos; Theo H. van Dijk; Geesje M. Dallinga-van Thie; Aart J. Nederveen; Willem J. M. Mulder; G. Kees Hovingh; John J. P. Kastelein; Albert K. Groen; Erik S.G. Stroes

Reverse cholesterol transport (RCT) contributes to the anti-atherogenic effects of HDL. Patients with the orphan disease, familial hypoalphalipoproteinemia (FHA), are characterized by decreased tissue cholesterol removal and an increased atherogenic burden. We performed an open-label uncontrolled proof-of-concept study to evaluate the effect of infusions with a human apoA-I-containing HDL-mimetic particle (CER-001) on RCT and the arterial vessel wall in FHA. Subjects received 20 infusions of CER-001 (8 mg/kg) during 6 months. Efficacy was assessed by measuring (apo)lipoproteins, plasma-mediated cellular cholesterol efflux, fecal sterol excretion (FSE), and carotid artery wall dimension by MRI and artery wall inflammation by 18F-fluorodeoxyglucose-positron emission tomography/computed tomography scans. We included seven FHA patients: HDL-cholesterol (HDL-c), 13.8 [1.8–29.1] mg/dl; apoA-I, 28.7 [7.9–59.1] mg/dl. Following nine infusions in 1 month, apoA-I and HDL-c increased directly after infusion by 27.0 and 16.1 mg/dl (P = 0.018). CER-001 induced a 44% relative increase (P = 0.018) in in vitro cellular cholesterol efflux with a trend toward increased FSE (P = 0.068). After nine infusions of CER-001, carotid mean vessel wall area decreased compared with baseline from 25.0 to 22.8 mm2 (P = 0.043) and target-to-background ratio from 2.04 to 1.81 (P = 0.046). In FHA-subjects, CER-001 stimulates cholesterol mobilization and reduces artery wall dimension and inflammation, supporting further evaluation of CER-001 in FHA patients.


Current Opinion in Lipidology | 2012

Novel anti-inflammatory strategies in atherosclerosis.

Fleur M. van der Valk; Diederik F. van Wijk; Erik S.G. Stroes

Purpose of review Inflammation has been widely acknowledged to contribute throughout all stages of atherogenesis. However, these recent advances in our understanding have not been translated into clinical practice in which the mainstay of treatment is still lipid-targeted therapy. This review provides an overview of promising anti-inflammatory therapies in atherosclerosis, and discusses potential drawbacks and clinical benefits. Recent findings Immunosuppressive drugs are likely to beneficially affect atherogenesis. Several novel anti-inflammatory targets have been scrutinized, of which some have reached clinical development stage, such as cytokine targets interleukin-1 and interleukin-6, CCR2 antagonist, selective phospholipase, and leukotriene inhibitors. Novel imaging modalities such as MRI and PET-computed tomography provide valuable surrogate inflammatory endpoints for risk stratification and testing anti-inflammatory agents in cardiovascular randomized trials. Summary Anti-inflammatory therapies hold great promise in cardiovascular prevention regimens; however, atherosclerosis is a chronic disease, and systemic long-term use of anti-inflammatory agents carries the risk of complications arising from immunosuppression. In order to successfully add immunosuppressive drugs to our routine armament, we need to identify high-risk patients who benefit from anti-inflammatory treatment, increase our insight into the inflammatory pathogenesis of atherogenesis, and find safe and effective compounds capable of directly suppressing plaque inflammation.


European Heart Journal | 2016

Increased haematopoietic activity in patients with atherosclerosis.

Fleur M. van der Valk; Carlijn Kuijk; Simone L. Verweij; Lotte C.A. Stiekema; Yannick Kaiser; Sacha Zeerleder; Matthias Nahrendorf; Carlijn Voermans; Erik S.G. Stroes

Aims Experimental work posits that acute ischaemic events trigger haematopoietic activity, driving monocytosis, and atherogenesis. Considering the chronic low-grade inflammatory state in atherosclerosis, we hypothesized that haematopoietic hyperactivity is a persistent feature in cardiovascular disease (CVD). Therefore, we aimed to assess the activity of haematopoietic organs and haematopoietic stem and progenitor cells (HSPCs) in humans. Methods and results First, we performed 18F-fluorodeoxyglucose positron emission tomographic (18F-FDG PET) imaging in 26 patients with stable atherosclerotic CVD (ischaemic event >12 months ago), and 25 matched controls. In splenic tissue, 18F-FDG uptake was 2.68 ± 0.65 in CVD patients vs. 1.75 ± 0.54 in controls (1.6-fold higher; P< 0.001), and in bone marrow 3.20 ± 0.76 vs. 2.72 ± 0.46 (1.2-fold higher; P = 0.003), closely related to LDL cholesterol levels (LDLc, r = 0.72). Subsequently, we determined progenitor potential of HSPCs harvested from 18 patients with known atherosclerotic CVD and 30 matched controls; both groups were selected from a cohort of cancer patients undergoing autologous stem cell transplantation. In CVD patients, the normalized progenitor potential, expressed as the number of colony-forming units-granulocyte/monocyte (CFU-GM) colonies/CD34+ cell, was 1.6-fold higher compared with matched controls (P < 0.001). Finally, we assessed the effects of native and oxidized lipoproteins on HSPCs harvested from healthy donors in vitro. Haematopoietic stem and progenitor cells displayed a 1.5-fold increased CFU-GM capacity in co-culture with oxidized LDL in vitro (P = 0.002), which was inhibited by blocking oxidized phospholipids via E06 (P = 0.001). Conclusion Collectively, these findings strengthen the case for a chronically affected haematopoietic system, potentially driving the low-grade inflammatory state in patients with atherosclerosis.


European Heart Journal | 2017

PCSK9 monoclonal antibodies reverse the pro-inflammatory profile of monocytes in familial hypercholesterolaemia

Sophie J. Bernelot Moens; Annette E. Neele; Jeffrey Kroon; Fleur M. van der Valk; Jan Van den Bossche; Marten A. Hoeksema; Renate M Hoogeveen; Johan G. Schnitzler; Marie T. Baccara-Dinet; Garen Manvelian; Menno P.J. de Winther; Erik S.G. Stroes

Aims Migration of monocytes into the arterial wall contributes to arterial inflammation and atherosclerosis progression. Since elevated low-density lipoprotein cholesterol (LDL-C) levels have been associated with activation of plasma monocytes, intensive LDL-C lowering may reverse these pro-inflammatory changes. Using proprotein convertase subtilisin/kexin type 9 (PCSK9) monoclonal antibodies (mAbs) which selectively reduce LDL-C, we studied the impact of LDL-C lowering on monocyte phenotype and function in patients with familial hypercholesterolaemia (FH) not using statins due to statin-associated muscle symptoms. Methods and results We assessed monocyte phenotype and function using flow cytometry and a trans-endothelial migration assay in FH patients (n = 22: LDL 6.8 ± 1.9 mmol/L) and healthy controls (n = 18, LDL 2.9 ± 0.8 mmol/L). Monocyte chemokine receptor (CCR) 2 expression was approximaterly three-fold higher in FH patients compared with controls. C-C chemokine receptor type 2 (CCR2) expression correlated significantly with plasma LDL-C levels (r = 0.709) and was positively associated with intracellular lipid accumulation. Monocytes from FH patients also displayed enhanced migratory capacity ex vivo. After 24 weeks of PCSK9 mAb treatment (n = 17), plasma LDL-C was reduced by 49%, which coincided with reduced intracellular lipid accumulation and reduced CCR2 expression. Functional relevance was substantiated by the reversal of enhanced migratory capacity of monocytes following PCSK9 mAb therapy. Conclusions Monocytes of FH patients have a pro-inflammatory phenotype, which is dampened by LDL-C lowering by PCSK9 mAb therapy. LDL-C lowering was paralleled by reduced intracellular lipid accumulation, suggesting that LDL-C lowering itself is associated with anti-inflammatory effects on circulating monocytes.


Journal of the American College of Cardiology | 2014

In vivo imaging of enhanced leukocyte accumulation in atherosclerotic lesions in humans.

Fleur M. van der Valk; Jeffrey Kroon; Wouter V. Potters; Rogier M. Thurlings; Roelof J. Bennink; Hein J. Verberne; Aart J. Nederveen; Max Nieuwdorp; Willem J. M. Mulder; Zahi A. Fayad; Jaap D. van Buul; Erik S.G. Stroes

BACKGROUND Understanding how leukocytes impact atherogenesis contributes critically to our concept of atherosclerosis development and the identification of potential therapeutic targets. OBJECTIVES The study evaluates an in vivo imaging approach to visualize peripheral blood mononuclear cell (PBMC) accumulation in atherosclerotic lesions of cardiovascular (CV) patients using hybrid single-photon emission computed tomography/computed tomography (SPECT/CT). METHODS At baseline, CV patients and healthy controls underwent (18)fluorodeoxyglucose positron emission tomography-computed tomography and magnetic resonance imaging to assess arterial wall inflammation and dimensions, respectively. For in vivo trafficking, autologous PBMCs were isolated, labeled with technetium-99m, and visualized 3, 4.5, and 6 h post-infusion with SPECT/CT. RESULTS Ten CV patients and 5 healthy controls were included. Patients had an increased arterial wall inflammation (target-to-background ratio [TBR] right carotid 2.00 ± 0.26 in patients vs. 1.51 ± 0.12 in controls; p = 0.022) and atherosclerotic burden (normalized wall index 0.52 ± 0.09 in patients vs. 0.33 ± 0.02 in controls; p = 0.026). Elevated PBMC accumulation in the arterial wall was observed in patients; for the right carotid, the arterial-wall-to-blood ratio (ABR) 4.5 h post-infusion was 2.13 ± 0.35 in patients versus 1.49 ± 0.40 in controls (p = 0.038). In patients, the ABR correlated with the TBR of the corresponding vessel (for the right carotid: r = 0.88; p < 0.001). CONCLUSIONS PBMC accumulation is markedly enhanced in patients with advanced atherosclerotic lesions and correlates with disease severity. This study provides a noninvasive imaging tool to validate the development and implementation of interventions targeting leukocytes in atherosclerosis.


Journal of Lipid Research | 2016

Current therapies for lowering lipoprotein(a)

Julian C. van Capelleveen; Fleur M. van der Valk; Erik S.G. Stroes

Lipoprotein (a) [Lp(a)] is a human plasma lipoprotein with unique structural and functional characteristics. Lp(a) is an assembly of two components: a central core with apoB and an additional glycoprotein, called apo(a). Ever since the strong association between elevated levels of Lp(a) and an increased risk for CVD was recognized, interest in the therapeutic modulation of Lp(a) levels has increased. Here, the past and present therapies aiming to lower Lp(a) levels will be reviewed, demonstrating that these agents have had varying degrees of success. The next challenge will be to prove that Lp(a) lowering also leads to cardiovascular benefit in patients with elevated Lp(a) levels. Therefore, highly specific and potent Lp(a)-lowering strategies are awaited urgently.


Jacc-cardiovascular Imaging | 2016

Thresholds for Arterial Wall Inflammation Quantified by 18F-FDG PET Imaging: Implications for Vascular Interventional Studies

Fleur M. van der Valk; Simone L. Verweij; Koos A. H. Zwinderman; Aart C. Strang; Yannick Kaiser; Henk A. Marquering; A.J. Nederveen; Erik S.G. Stroes; Hein J. Verberne; James H.F. Rudd

Objectives This study assessed 5 frequently applied arterial 18fluorodeoxyglucose (18F-FDG) uptake metrics in healthy control subjects, those with risk factors and patients with cardiovascular disease (CVD), to derive uptake thresholds in each subject group. Additionally, we tested the reproducibility of these measures and produced recommended sample sizes for interventional drug studies. Background 18F-FDG positron emission tomography (PET) can identify plaque inflammation as a surrogate endpoint for vascular interventional drug trials. However, an overview of 18F-FDG uptake metrics, threshold values, and reproducibility in healthy compared with diseased subjects is not available. Methods 18F-FDG PET/CT of the carotid arteries and ascending aorta was performed in 83 subjects (61 ± 8 years) comprising 3 groups: 25 healthy controls, 23 patients at increased CVD risk, and 35 patients with known CVD. We quantified 18F-FDG uptake across the whole artery, the most-diseased segment, and within all active segments over several pre-defined cutoffs. We report these data with and without background corrections. Finally, we determined measurement reproducibility and recommended sample sizes for future drug studies based on these results. Results All 18F-FDG uptake metrics were significantly different between healthy and diseased subjects for both the carotids and aorta. Thresholds of physiological 18F-FDG uptake were derived from healthy controls using the 90th percentile of their target to background ratio (TBR) value (TBRmax); whole artery TBRmax is 1.84 for the carotids and 2.68 in the aorta. These were exceeded by >52% of risk factor patients and >67% of CVD patients. Reproducibility was excellent in all study groups (intraclass correlation coefficient >0.95). Using carotid TBRmax as a primary endpoint resulted in sample size estimates approximately 20% lower than aorta. Conclusions We report thresholds for physiological 18F-FDG uptake in the arterial wall in healthy subjects, which are exceeded by the majority of CVD patients. This remains true, independent of readout vessel, signal quantification method, or the use of background correction. We also confirm the high reproducibility of 18F-FDG PET measures of inflammation. Nevertheless, because of overlap between subject categories and the relatively small population studied, these data have limited generalizability until substantiated in larger, prospective event-driven studies. (Vascular Inflammation in Patients at Risk for Atherosclerotic Disease; NTR5006)


Arteriosclerosis, Thrombosis, and Vascular Biology | 2015

Increased Systemic and Plaque Inflammation in ABCA1 Mutation Carriers With Attenuation by Statins

Andrea E. Bochem; Fleur M. van der Valk; Sonia Tolani; Erik S.G. Stroes; Marit Westerterp; Alan R. Tall

Objective— We previously demonstrated that subjects with functional ATP-binding cassette (ABC) A1 mutations have increased atherosclerosis, which has been attributed to the role of ABCA1 in reverse cholesterol transport. More recently, a proinflammatory effect of Abca1 deficiency was shown in mice, potentially contributing to atherogenesis. In this study, we investigated whether ABCA1 deficiency was associated with proinflammatory changes in humans. Approach and Results— Thirty-one heterozygous, 5 homozygous ABCA1 mutation carriers, and 21 matched controls were studied. 18Fluorodeoxyglucose positron emission tomography with computed tomographic scanning was performed in a subset of carriers and controls to assess arterial wall inflammation (target:background ratio). Heterozygous ABCA1 mutation carriers had a 20% higher target:background ratio than in controls (target:background ratio; P=0.008). In carriers using statins (n=7), target:background ratio was 21% reduced than in nonstatin users (n=7; P=0.03). We then measured plasma cytokine levels. Tumor necrosis factor &agr;, monocyte chemoattractant protein-1, and interleukin-6 levels were increased in heterozygous and homozygous ABCA1 mutation carriers. We isolated monocytes from carriers and controls and measured inflammatory gene expression. Only TNF&agr; mRNA was increased in monocytes from heterozygous ABCA1 mutation carriers. Additional studies in THP-1 macrophages showed that both ABCA1 deficiency and lipoprotein-deficient plasma from ABCA1 mutation carriers increased inflammatory gene expression. Conclusions— Our data suggest a proinflammatory state in ABCA1 mutation carriers as reflected by an increased positron emission tomography–MRI signal in nonstatin using subjects, and increased circulating cytokines. The increased inflammation in ABCA1 mutation carriers seems to be attenuated by statins.

Collaboration


Dive into the Fleur M. van der Valk's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Willem J. M. Mulder

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Max Nieuwdorp

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zahi A. Fayad

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge