Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Flonia Levy-Adam is active.

Publication


Featured researches published by Flonia Levy-Adam.


Cancer Research | 2006

Heparanase Induces Vascular Endothelial Growth Factor Expression: Correlation with p38 Phosphorylation Levels and Src Activation

Anna Zetser; Yulia Bashenko; Evgeny Edovitsky; Flonia Levy-Adam; Israel Vlodavsky; Neta Ilan

Heparanase is an endo-beta-D-glucuronidase involved in cleavage of heparan sulfate moieties and hence participates in extracellular matrix (ECM) degradation and remodeling. Traditionally, heparanase activity was correlated with the metastatic potential of a variety of tumor-derived cell types. Cloning of the heparanase gene indicated that heparanase expression is up-regulated in a variety of primary human tumors. In some cases, heparanase up-regulation correlated with increased tumor vascularity, an angiogenic feature that could be recapitulated in a number of in vitro and in vivo models. The mechanism by which heparanase enhances angiogenic responses is not entirely clear but is thought to be mediated primarily by release of ECM-resident angiogenic growth factors such as basic fibroblast growth factor and vascular endothelial growth factor (VEGF). Here, we examined the possibility that heparanase directly participates in VEGF gene regulation. We provide evidence that heparanase overexpression in human embryonic kidney 293, MDA-MB-435 human breast carcinoma, and rat C6 glioma cells resulted in a 3- to 6-fold increase in VEGF protein and mRNA levels, which correlated with elevation of p38 phosphorylation. Moreover, heparanase down-regulation in B16 mouse melanoma cells by a specific siRNA vector was accompanied by a decrease in VEGF and p38 phosphorylation levels, suggesting that VEGF gene expression is regulated by endogenous heparanase. Interestingly, a specific p38 inhibitor did not attenuate VEGF up-regulation by heparanase whereas Src inhibitors completely abrogated this effect. These results indicate, for the first time, that heparanase is actively involved in the regulation of VEGF gene expression, mediated by activation of Src family members.


Journal of Cell Science | 2004

Processing and activation of latent heparanase occurs in lysosomes

Anna Zetser; Flonia Levy-Adam; Victoria Kaplan; Svetlana Gingis-Velitski; Yulia Bashenko; Shay Schubert; Moshe Y. Flugelman; Israel Vlodavsky; Neta Ilan

Heparanase is a heparan sulfate degrading endoglycosidase participating in extracellular matrix degradation and remodeling. Heparanase is synthesized as a 65 kDa non-active precursor that subsequently undergoes proteolytic cleavage, yielding 8 kDa and 50 kDa protein subunits that heterodimerize to form an active enzyme. The protease responsible for heparanase processing is currently unknown, as is the sub-cellular processing site. In this study, we characterize an antibody (733) that preferentially recognizes the active 50 kDa heparanase form as compared to the non-active 65 kDa heparanase precursor. We have utilized this and other anti-heparanase antibodies to study the cellular localization of the latent 65 kDa and active 50 kDa heparanase forms during uptake and processing of exogenously added heparanase. Interestingly, not only the processed 50 kDa, but also the 65 kDa heparanase precursor was localized to perinuclear vesicles, suggesting that heparanase processing occurs in lysosomes. Indeed, heparanase processing was completely inhibited by chloroquine and bafilomycin A1, inhibitors of lysosome proteases. Similarly, processing of membrane-targeted heparanase was also chloroquine-sensitive, further ruling out the plasma membrane as the heparanase processing site. Finally, we provide evidence that antibody 733 partially neutralizes the enzymatic activity of heparanase, suggesting that the N-terminal region of the molecule is involved in assuming an active conformation. Monoclonal antibodies directed to this region are likely to provide specific heparanase inhibitors and hence assist in resolving heparanase functions under normal and pathological conditions.


Journal of Biological Chemistry | 2004

Heparanase uptake is mediated by cell membrane heparan sulfate proteoglycans.

Svetlana Gingis-Velitski; Anna Zetser; Victoria Kaplan; Olga Ben-Zaken; Esti Cohen; Flonia Levy-Adam; Yulia Bashenko; Moshe Y. Flugelman; Israel Vlodavsky; Neta Ilan

Heparanase is a mammalian endoglycosidase that degrades heparan sulfate (HS) at specific intrachain sites, an activity that is strongly implicated in cell dissemination associated with metastasis and inflammation. In addition to its structural role in extracellular matrix assembly and integrity, HS sequesters a multitude of polypeptides that reside in the extracellular matrix as a reservoir. A variety of growth factors, cytokines, chemokines, and enzymes can be released by heparanase activity and profoundly affect cell and tissue function. Thus, heparanase bioavailability, accessibility, and activity should be kept tightly regulated. We provide evidence that HS is not only a substrate for, but also a regulator of, heparanase. Addition of heparin or xylosides to cell cultures resulted in a pronounced accumulation of, heparanase in the culture medium, whereas sodium chlorate had no such effect. Moreover, cellular uptake of heparanase was markedly reduced in HS-deficient CHO-745 mutant cells, heparan sulfate proteoglycan-deficient HT-29 colon cancer cells, and heparinase-treated cells. We also studied the heparanase biosynthetic route and found that the half-life of the active enzyme is ∼30 h. This and previous localization studies suggest that heparanase resides in the endosomal/lysosomal compartment for a relatively long period of time and is likely to play a role in the normal turnover of HS. Co-localization studies and cell fractionation following heparanase addition have identified syndecan family members as candidate molecules responsible for heparanase uptake, providing an efficient mechanism that limits extracellular accumulation and function of heparanase.


Biochemical and Biophysical Research Communications | 2003

Heterodimer formation is essential for heparanase enzymatic activity

Flonia Levy-Adam; Hua-Quan Miao; Robert L. Heinrikson; Israel Vlodavsky; Neta Ilan

Heparanase is an endo-beta-D-glucuronidase involved in cleavage of heparan sulfate residues and hence participates in extracellular matrix degradation and remodeling. The heparanase cDNA encodes for a polypeptide of 543 amino acids that appears as a approximately 65 kDa band in SDS-PAGE analysis. The protein undergoes a proteolytic cleavage that is likely to occur at two potential cleavage sites, Glu(109)-Ser(110) and Gln(157)-Lys(158), yielding an 8 kDa polypeptide at the N-terminus, a 50 kDa polypeptide at the C-terminus, and a 6 kDa linker polypeptide that resides in-between. The active form of heparanase has long been thought to be a 50 kDa polypeptide isolated from cells and tissues. However, attempts to obtain heparanase activity after expression of the 50 kDa polypeptide failed, suggesting that the N-terminal region is important for heparanase enzymatic activity. It has been hypothesized that heterodimer formation between the 8 and 50 kDa heparanase subunits is important for heparanase enzymatic activity. By individually or co-expressing the 8 and 50 kDa heparanase subunits in mammalian cells, we demonstrate specific association between the heparanase subunits by means of co-immunoprecipitation and pull-down experiments. Moreover, a region in the 50 kDa heparanase subunit that mediates interaction with the 8 kDa subunit was identified. Altogether, our results clearly indicate that heterodimer formation is necessary and sufficient for heparanase enzymatic activity in mammalian cells.


Cancer and Metastasis Reviews | 2011

The heparanase system and tumor metastasis: is heparanase the seed and soil?

Gil Arvatz; Itay Shafat; Flonia Levy-Adam; Neta Ilan; Israel Vlodavsky

Tumor metastasis, the leading cause of cancer patients’ death, is still insufficiently understood. While concepts and mechanisms of tumor metastasis are evolving, it is widely accepted that cancer metastasis is accompanied by orchestrated proteolytic activity executed by array of proteases. While matrix metalloproteinases (MMPs) attracted much attention, other proteases constitute the tumor milieu, of which a large family consists of cysteine proteases named cathepsins. Like MMPs, some cathepsins are often upregulated in cancer and, once secreted or localized to the cell surface, can degrade components of the extracellular matrix. In addition, cathepsin L is held responsible for processing and activation of heparanase, an endo-β-glucuronidase capable of cleaving heparan sulfate side chains of heparan sulfate proteoglycans, activity that is strongly implicated in cell dissemination associated with tumor metastasis, angiogenesis, and inflammation. In this review, we discuss recent progress in heparanase research focusing on heparanase-related molecules namely, cathepsin L and heparanase 2 (Hpa2), a heparanase homolog.


PLOS ONE | 2008

Heparanase Facilitates Cell Adhesion and Spreading by Clustering of Cell Surface Heparan Sulfate Proteoglycans

Flonia Levy-Adam; Sari Feld; Edith Suss-Toby; Israel Vlodavsky; Neta Ilan

Heparanase is a heparan sulfate (HS) degrading endoglycosidase participating in extracellular matrix degradation and remodeling. Apart of its well characterized enzymatic activity, heparanase was noted to exert also enzymatic-independent functions. Non-enzymatic activities of heparanase include enhanced adhesion of tumor-derived cells and primary T-cells. Attempting to identify functional domains of heparanase that would serve as targets for drug development, we have identified heparin binding domains of heparanase. A corresponding peptide (residues Lys158-Asp171, termed KKDC) was demonstrated to physically associate with heparin and HS, and to inhibit heparanase enzymatic activity. We hypothesized that the pro-adhesive properties of heparanase are mediated by its interaction with cell surface HS proteoglycans, and utilized the KKDC peptide to examine this possibility. We provide evidence that the KKDC peptide interacts with cell membrane HS, resulting in clustering of syndecan-1 and syndecan-4. We applied classical analysis of cell morphology, fluorescent and time-lapse microscopy and demonstrated that the KKDC peptide efficiently stimulates the adhesion and spreading of various cell types, mediated by PKC, Src, and the small GTPase Rac1. These results support, and further substantiate the notion that heparanase function is not limited to its enzymatic activity.


Journal of Biological Chemistry | 2010

Heparanase 2 Interacts with Heparan Sulfate with High Affinity and Inhibits Heparanase Activity

Flonia Levy-Adam; Sari Feld; Victoria Cohen-Kaplan; Anna Shteingauz; Miriam Gross; Gil Arvatz; Inna Naroditsky; Neta Ilan; Ilana Doweck; Israel Vlodavsky

Heparanase activity is highly implicated in cell dissemination associated with tumor metastasis, angiogenesis, and inflammation. Heparanase expression is induced in many hematological and solid tumors, associated with poor prognosis. Heparanase homolog, termed heparanase 2 (Hpa2), was cloned based on sequence homology. Detailed characterization of Hpa2 at the biochemical, cellular, and clinical levels has not been so far reported, and its role in normal physiology and pathological disorders is obscure. We provide evidence that unlike heparanase, Hpa2 is not subjected to proteolytic processing and exhibits no enzymatic activity typical of heparanase. Notably, the full-length Hpa2c protein inhibits heparanase enzymatic activity, likely due to its high affinity to heparin and heparan sulfate and its ability to associate physically with heparanase. Hpa2 expression was markedly elevated in head and neck carcinoma patients, correlating with prolonged time to disease recurrence (follow-up to failure; p = 0.006) and inversely correlating with tumor cell dissemination to regional lymph nodes (N-stage; p = 0.03). Hpa2 appears to restrain tumor metastasis, likely by attenuating heparanase enzymatic activity, conferring a favorable outcome of head and neck cancer patients.


Seminars in Cancer Biology | 2010

Tumorigenic and adhesive properties of heparanase

Flonia Levy-Adam; Neta Ilan; Israel Vlodavsky

Heparanase is an endo-β-glucuronidase that cleaves heparan sulfate side chains presumably at sites of low sulfation, activity that is strongly implicated with cell invasion associated with cancer metastasis, a consequence of structural modification that loosens the extracellular matrix barrier. In addition, heparanase exerts pro-adhesive properties, mediated by clustering of membrane heparan sulfate proteoglycans (i.e., syndecans) and activation of signaling molecules such as Akt, Src, EGFR, and Rac in a heparan sulfate-dependent and -independent manner. Activation of signaling cascades by enzymatically inactive heparanase and by a peptide corresponding to its substrate binding domain not only increases cell adhesion but also facilitates cancer cell growth. This notion is supported by preclinical and clinical settings, encouraging the development of anti-heparanase therapeutics. Here, we summarize recent progress in heparanase research emphasizing the molecular mechanisms that govern its pro-tumorigenic and pro-adhesive properties. Pro-adhesive properties of the heparanase homolog, heparanase 2 (Hpa2), are also discussed. Enzymatic activity-independent function of proteases (i.e., matrix metalloproteinases) is discussed in the context of cell adhesion and tumor progression. Collectively, these examples suggest that enzyme function exceeds beyond the enzymatic aspect, thus significantly expanding the scope of the functional proteome. Cross-talk with matrix metalloproteinases and the role of heparanase in pathological settings other than cancer are also described.


The FASEB Journal | 2010

A novel human heparanase splice variant, T5, endowed with protumorigenic characteristics

Uri Barash; Victoria Cohen-Kaplan; Gil Arvatz; Svetlana Gingis-Velitski; Flonia Levy-Adam; Ofer Nativ; Ronen Shemesh; Michal Ayalon-Sofer; Neta Ilan; Israel Vlodavsky

Heparanase is a mammalian endo‐β‐d‐glucuronidase that can cleave heparan sulfate side chains, an activity strongly implicated in tumor cell dissemination. The current study aimed to identify and characterize heparanase splice variants. LEADS, Compugens alternative splicing modeling platform (Compugen, Tel Aviv, Israel), was used to search for splice variants in silico; tumor‐derived cell lines (i.e., CAG myeloma) and tumor biopsies were utilized to validate T5 expression in vivo; signaling (i.e., Src phosphorylation) was evaluated following T5 gene silencing or overexpression and correlated with cell proliferation, colony formation, and tumor xenograft development. A novel spliced form of human heparanase, termed T5, was identified. In this splice variant, 144 bp of intron 5 are joined with exon 4, which results in a truncated, enzymatically inactive protein. T5 overexpression resulted in increased cell proliferation and larger colonies in soft agar, mediated by Src activation. Furthermore, T5 overexpression markedly enhanced tumor xenograft development. T5 expression is up‐regulated in 75% of human renal cell carcinoma biopsies examined, which suggests that this splice variant is clinically relevant. Controls included cells overexpressing wild‐type heparanase or an empty plasmid and normal‐looking tissue adjacent the carcinoma lesion. T5 is a novel functional splice variant of human heparanase endowed with protumorigenic characteristics.—Barash, U., CohenKaplan, V., Arvatz, G., Gingis‐Velitski, S., Levy‐Adam, F., Nativ, O., Shemesh, R., Ayalon‐Sofer, M., Ilan, N., Vlodavsky, I. A novel human heparanase splice variant, T5, endowed with protumorigenic characteristics. FASEB J. 24, 1239–1248 (2OIO). www.fasebj.org


Journal of Biological Chemistry | 2005

Identification and Characterization of Heparin/Heparan Sulfate Binding Domains of the Endoglycosidase Heparanase

Flonia Levy-Adam; Ghada Abboud-Jarrous; Marco Guerrini; Daniela Beccati; Israel Vlodavsky; Neta Ilan

Collaboration


Dive into the Flonia Levy-Adam's collaboration.

Top Co-Authors

Avatar

Neta Ilan

Rappaport Faculty of Medicine

View shared research outputs
Top Co-Authors

Avatar

Israel Vlodavsky

Rappaport Faculty of Medicine

View shared research outputs
Top Co-Authors

Avatar

Anna Zetser

Rappaport Faculty of Medicine

View shared research outputs
Top Co-Authors

Avatar

Israel Vlodavsky

Rappaport Faculty of Medicine

View shared research outputs
Top Co-Authors

Avatar

Gil Arvatz

Rappaport Faculty of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eyal Zcharia

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Moshe Y. Flugelman

Rappaport Faculty of Medicine

View shared research outputs
Top Co-Authors

Avatar

Sari Feld

Rappaport Faculty of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge