Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Flora Vitale is active.

Publication


Featured researches published by Flora Vitale.


Journal of Neural Transmission | 2016

Our first decade of experience in deep brain stimulation of the brainstem: elucidating the mechanism of action of stimulation of the ventrolateral pontine tegmentum.

Paolo Mazzone; Osvaldo Vilela Filho; Fabio Viselli; Angelo Insola; Stefano Sposato; Flora Vitale; Eugenio Scarnati

The region of the pedunculopontine tegmental nucleus (PPTg) has been proposed as a novel target for deep brain stimulation (DBS) to treat levodopa resistant symptoms in motor disorders. Recently, the anatomical organization of the brainstem has been revised and four new distinct structures have been represented in the ventrolateral pontine tegmentum area in which the PPTg was previously identified. Given this anatomical reassessment, and considering the increasing of our experience, in this paper we revisit the value of DBS applied to that area. The reappraisal of clinical outcomes in the light of this revisitation may also help to understand the consequences of DBS applied to structures located in the ventrolateral pontine tegmentum, apart from the PPTg. The implantation of 39 leads in 32 patients suffering from Parkinson’s disease (PD, 27 patients) and progressive supranuclear palsy (PSP, four patients) allowed us to reach two major conclusions. The first is that the results of the advancement of our technique in brainstem DBS matches the revision of brainstem anatomy. The second is that anatomical and functional aspects of our findings may help to explain how DBS acts when applied in the brainstem and to identify the differences when it is applied either in the brainstem or in the subthalamic nucleus. Finally, in this paper we discuss how the loss of neurons in brainstem nuclei occurring in both PD and PSP, the results of intraoperative recording of somatosensory evoked potentials, and the improvement of postural control during DBS point toward the potential role of ascending sensory pathways and/or other structures in mediating the effects of DBS applied in the ventrolateral pontine tegmentum region.


Neuroscience | 2016

Cholinergic excitation from the pedunculopontine tegmental nucleus to the dentate nucleus in the rat

Flora Vitale; Claudia Mattei; Annamaria Capozzo; Ilaria Pietrantoni; P. Mazzone; Eugenio Scarnati

In spite of the existence of pedunculopontine tegmental nucleus (PPTg) projections to cerebellar nuclei, their nature and functional role is unknown. These fibers may play a crucial role in postural control and may be involved in the beneficial effects induced by deep-brain stimulation (DBS) of brainstem structures in motor disorders. We investigated the effects of PPTg microstimulation on single-unit activity of dentate, fastigial and interpositus nuclei. The effects of PPTg stimulation were also studied in rats whose PPTg neurons were destroyed by ibotenic acid and subsequently subjected to iontophoretically applied cholinergic antagonists. The main response recorded in cerebellar nuclei was a short-latency (1.5-2 ms) and brief (13-15 ms) orthodromic activation. The dentate nucleus was the most responsive to PPTg stimulation. The destruction of PPTg cells reduced the occurrence of PPTg-evoked activation of dentate neurons, suggesting that the effect was due to stimulation of cell bodies and not due to fibers passing through or close to the PPTg. Application of cholinergic antagonists reduced or eliminated the PPTg-evoked response recorded in the dentate nucleus. The results show that excitation is exerted by the PPTg on the cerebellar nuclei, in particular on the dentate nucleus. Taken together with the reduction of nicotinamide adenine dinucleotide phosphate-diaphorase-positive neurons in lesioned animals, the iontophoretic experiments suggest that the activation of dentate neurons is due to cholinergic fibers. These data help to explain the effects of DBS of the PPTg on axial motor disabilities in neurodegenerative disorders.


Tumor Biology | 2017

The novel CXCR4 antagonist, PRX177561, reduces tumor cell proliferation and accelerates cancer stem cell differentiation in glioblastoma preclinical models:

Giovanni Luca Gravina; Andrea Mancini; Alessandro Colapietro; Flora Vitale; Antonella Vetuschi; Simona Pompili; Giulia Rossi; Francesco Marampon; Peter Richardson; Lee Patient; Stephen Burbidge; Claudio Festuccia

Glioblastoma is the most frequent and the most lethal primary brain tumor among adults. Standard of care is the association of radiotherapy with concomitant or adjuvant temozolomide. However, to date, recurrence is inevitable. The CXCL12/CXCR4 pathway is upregulated in the glioblastoma tumor microenvironment regulating tumor cell proliferation, local invasion, angiogenesis, and the efficacy of radio-chemotherapy. In this study, we evaluated the effects of the novel CXCR4 antagonist, PRX177561, in preclinical models of glioblastoma. CXCR4 expression and PRX177561 effects were assessed on a panel of 12 human glioblastoma cells lines and 5 patient-derived glioblastoma stem cell cultures. Next, the effect of PRX177561 was tested in vivo, using subcutaneous injection of U87MG, U251, and T98G cells as well as orthotopic intrabrain inoculation of luciferase-transfected U87MG cells. Here we found that PRX177561 impairs the proliferation of human glioblastoma cell lines, increases apoptosis, and reduces CXCR4 expression and cell migration in response to stromal cell–derived factor 1alpha in vitro. PRX177561 reduced the expression of stem cell markers and increased that of E-cadherin and glial fibrillary acidic protein in U87MG cells consistent with a reduction in cancer stem cells. In vivo, PRX177561 reduced the weight and increased the time to progression of glioblastoma subcutaneous tumors while increasing disease-free survival and overall survival of mice bearing orthotopic tumors. Our findings suggest that targeting stromal cell–derived factor 1 alpha/CXCR4 axis by PRX177561 might represent a novel therapeutic approach against glioblastoma and support further investigation of this compound in more complex preclinical settings in order to determine its therapeutic potential.


Tumor Biology | 2016

Dual PI3K/mTOR inhibitor, XL765 (SAR245409), shows superior effects to sole PI3K [XL147 (SAR245408)] or mTOR [rapamycin] inhibition in prostate cancer cell models.

Giovanni Luca Gravina; Andrea Mancini; Luca Scarsella; Alessandro Colapietro; Ana Jitariuc; Flora Vitale; Francesco Marampon; Enrico Ricevuto; Claudio Festuccia

Deregulation of phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) signaling pathway contributes to prostate cancer development and progression. Here, we compared the in vitro effects of the dual PI3K/mTOR inhibitor (XL765) with those observed with the sole PI3K (XL147) or mTOR (rapamycin) inhibition in 2 non-tumor prostate epithelial cell lines, 8 prostate cancer cell lines, and 11 prostate cancer cell derivatives. We demonstrated that the XL765 treatment showed superior and proliferative effects of XL147 or rapamycin. The XL765 effects were associated to increasing the chromosome region maintenance 1 (CRM1)-mediated nuclear localization of glycogen synthase kinase 3 beta (GSK3β) and Foxo-1a with higher induction of apoptosis when compared to those observed in XL147 and rapamycin treatments. IC50 values were calculated in phosphatase and tensin homologue deleted on chromosome 10 (PTEN)-positive and PTEN-negative cell lines as well as after PTEN transfection or PTEN downmodulation by siRNA strategy revealing that the presence of this protein was associated with reduced sensitivity to PI3K and mTOR inhibitors. The comparison of IC50 values was also calculated for androgen-dependent and -independent cell lines as well as after androgen receptor (AR) transfection or the AR downmodulation by siRNA strategy revealing that androgen independence was associated with enhanced responsiveness. Our results provide a rationale to use the dual PI3K/Akt/mTOR inhibitors in hormone-insensitive prostate cancer models due to the overactivity of PI3K/Akt/mTOR in this disease condition.


BMC Cancer | 2015

Erratum to: KPT-330, a potent and selective exportin-1 (XPO-1) inhibitor, shows antitumor effects modulating the expression of cyclin D1 and survivin in prostate cancer models

Giovanni Luca Gravina; Andrea Mancini; Patrizia Sanità; Flora Vitale; Francesco Marampon; Luca Ventura; Yosef Landesman; Dilara McCauley; Michael Kauffman; Sharon Shacham; Claudio Festuccia

Background and aimsIncreased expression of Chromosome Region Maintenance (CRM-1)/exportin-1 (XPO-1) has been correlated with poor prognosis in several aggressive tumors, making it an interesting therapeutic target. Selective Inhibitor of Nuclear Export (SINE) compounds bind to XPO-1 and block its ability to export cargo proteins. Here, we investigated the effects of a new class of SINE compounds in models of prostate cancer.Material and methodsWe evaluated the expression of XPO-1 in human prostate cancer tissues and cell lines. Next, six SINE (KPT-127, KPT-185, KPT-205, KPT-225, KPT-251 and KPT-330) compounds having different potency with broad-spectrum, tumor-selective cytotoxicity, tolerability and pharmacokinetic profiles were tested in a panel of prostate cancer cells representing distinct differentiation/progression states of disease and genotypes. Two SINE candidates for clinical trials (KPT-251 and KPT-330) were also tested in vivo in three cell models of aggressive prostate cancer engrafted in male nude mice.Results and conclusionsXPO-1 is overexpressed in prostate cancer compared to normal or hyperplastic tissues. Increased XPO-1 expression, mainly in the nuclear compartment, was associated with increased Gleason score and bone metastatic potential supporting the use of SINEs in advanced prostate cancer. SINE compounds inhibited proliferation and promoted apoptosis of tumor cells, but did not affect immortalized non-transformed prostate epithelial cells. Nuclei from SINE treated cells showed increased protein localization of XPO-1, survivin and cyclin D1 followed by degradation of these proteins leading to cell cycle arrest and apoptosis. Oral administration of KPT-251 and KPT-330 in PC3, DU145 and 22rv1 tumor-bearing nude mice reduced tumor cell proliferation, angiogenesis and induced apoptosis. Our results provide supportive evidence for the therapeutic use of SINE compounds in advanced/castration resistant prostate cancers and warrants further clinical investigation.


Brain Research | 2017

Fluorescent light induces neurodegeneration in the rodent nigrostriatal system but near infrared LED light does not

Stefania Romeo; Flora Vitale; Cristina Viaggi; Stefano Di Marco; Gabriella Aloisi; Irene Fasciani; Carla Pardini; Ilaria Pietrantoni; Mattia Di Paolo; Serena Riccitelli; Rita Maccarone; Claudia Mattei; Marta Capannolo; Mario Rossi; Annamaria Capozzo; Giovanni Corsini; Eugenio Scarnati; L. Lozzi; Francesca Vaglini; Roberto Maggio

We investigated the effects of continuous artificial light exposure on the mouse substantia nigra (SN). A three month exposure of C57Bl/6J mice to white fluorescent light induced a 30% reduction in dopamine (DA) neurons in SN compared to controls, accompanied by a decrease of DA and its metabolites in the striatum. After six months of exposure, neurodegeneration progressed slightly, but the level of DA returned to the basal level, while the metabolites increased with respect to the control. Three month exposure to near infrared LED light (∼710nm) did not alter DA neurons in SN, nor did it decrease DA and its metabolites in the striatum. Furthermore mesencephalic cell viability, as tested by [3H]DA uptake, did not change. Finally, we observed that 710nm LED light, locally conveyed in the rat SN, could modulate the firing activity of extracellular-recorded DA neurons. These data suggest that light can be detrimental or beneficial to DA neurons in SN, depending on the source and wavelength.


Behavioural Brain Research | 2014

Continuous stimulation of the pedunculopontine tegmental nucleus at 40 Hz affects preparative and executive control in a delayed sensorimotor task and reduces rotational movements induced by apomorphine in the 6-OHDA parkinsonian rat.

Annamaria Capozzo; Flora Vitale; Claudia Mattei; Paolo Mazzone; Eugenio Scarnati

The pedunculopontine tegmental nucleus (PPTg) relays basal ganglia signals to the thalamus, lower brainstem and spinal cord. Using the 6-hydroxydopamine (6-OHDA) rat model of parkinsonism, we investigated whether deep brain stimulation (DBS) of the PPTg (40 Hz, 60 μs, 200-400 μA) may influence the preparative and executive phases in a conditioned behavioural task, and the motor asymmetries induced by apomorphine. In the conditioned task, rats had to press two levers according to a fixed delay paradigm. The 6-OHDA lesion was placed in the right medial forebrain bundle, i.e. contralaterally to the preferred forepaw used by rats to press levers in the adopted task. The stimulating electrode was implanted in the right PPTg, i.e. contralateral to left side, which was expected to be most affected. The lesion significantly reduced correct responses from 63.4% to 16.6%. PPTg-DBS effects were episodic; however, when rats successfully performed in the task (18.9%), reaction time (468.8 ± 36.5 ms) was significantly increased (589.9 ± 45.9 ms), but not improved by PPTg-DBS (646.7 ± 33.8 ms). Movement time was significantly increased following the lesion (649.2 ± 42.6 ms vs. 810.9 ± 53.0 ms), but significantly reduced by PPTg-DBS (820.4 ± 39.4 ms) compared to sham PPTg-DBS (979.8 ± 47.6 ms). In a second group of lesioned rats, rotations induced by apomorphine were significantly reduced by PPTg-DBS compared to sham PPTg-DBS (12.2 ± 0.6 vs. 9.5 ± 0.4 mean turns/min). Thus, it appears that specific aspects of motor deficits in 6-OHDA-lesioned rats may be modulated by PPTg-DBS.


Neural Regeneration Research | 2016

Cholinergic input from the pedunculopontine nucleus to the cerebellum: implications for deep brain stimulation in Parkinson's disease

Eugenio Scarnati; Flora Vitale; Annamaria Capozzo; Paolo Mazzone

Deep brain stimulation (DBS) is a well established electrophysiological treatment initially applied to treat medication-refractory motor symptoms in Parkinsons disease (PD), and is now being explored for several neurological and psychiatric disorders. The specific physiological mechanisms underlying the effectiveness of DBS are not fully understood, although some hypothesized general mechanisms may be acceptable (Wichmann and DeLong, 2016). Early hypotheses suggested that stimulation of the subthalamic nucleus (STN) in PD produced the same clinical effect as a lesion. In other words, DBS was initially considered to suppress or modulate the abnormal bursting discharge patterns that occur in STN neurons in parkinsonian patients. Several mechanisms have been proposed to explain this effect, invoking what would happen at the site of stimulation and/or in the neuronal circuitry to which the targeted region for stimulation is functionally connected. These mechanisms include depolarization block caused by increase of potassium currents, inactivation of sodium channels, presynaptic depression of excitatory afferents, and stimulation-induced activation of inhibitory afferents. However, evidence in favor of activation of STN neurons was also provided, possibly mediated by stimulation-induced activation of excitatory projections from the motor cortex, or by a direct effect of stimulation directly on STN neurons. Moreover, neuronal activity may be phase locked to the pulse train, with following frequencies dictated by the stimulus interval.


Archive | 2018

Deep Brain Stimulation of the Pedunculopontine Tegmental Nucleus Improves Static Balance in Parkinson’s Disease

Paolo Mazzone; Flora Vitale; Annamaria Capozzo; Fabio Viselli; Eugenio Scarnati

Abstract Postural instability is a major problem in Parkinsons disease (PD), being poorly responsive to l -dopa treatment. There is now hope that deep brain stimulation (DBS) of the pedunculopontine tegmental nucleus (PPTg) may ameliorate posture problems, likely acting on nondopaminergic pathways. To explore this possibility we investigated PPTg DBS on fluctuations in the center of pressure (CoP) during upright stance. Total length of oscillations (TL) increased in patients under different drug/DBS and eye-state combinations when compared with controls. CoP displacement velocity was higher in off-drug/off-DBS when compared with controls, but was lower when comparing off-drug/on-DBS versus off-drug/off-DBS. The Rombergs index (RI) referring to sway ellipse (SE) did not change when comparing controls versus the four studied treatments. In contrast, significant increases occurred in the RI for TL when comparing controls versus each treatment. TL and SE were higher when l -dopa-treated patients kept their eyes closed, but decreased irrespective of eye state when DBS was applied. We conclude that PPTg DBS may improve l -dopa-resistant axial and postural abnormalities in PD.


Journal of Hematology & Oncology | 2018

Correction to: The first-in-class alkylating deacetylase inhibitor molecule tinostamustine shows antitumor effects and is synergistic with radiotherapy in preclinical models of glioblastoma

Claudio Festuccia; Andrea Mancini; Alessandro Colapietro; G.L. Gravina; Flora Vitale; Francesco Marampon; S. Delle Monache; Simona Pompili; L. Cristiano; A. Vetuschi; Vincenzo Tombolini; Y. Chen; T. Mehrling

The original article [1] contained an error whereby Fig. 4 displayed incorrect magnification scales.

Collaboration


Dive into the Flora Vitale's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge