Florence Besse
University of Nice Sophia Antipolis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Florence Besse.
Nature Reviews Molecular Cell Biology | 2008
Florence Besse; Anne Ephrussi
As highlighted by recent genome-wide analyses in diverse organisms and cell types, subcellular targeting of mRNAs has emerged as a major mechanism for cells to establish functionally distinct compartments and structures. For protein synthesis to be spatially restricted, translation of localizing mRNAs is silenced during their transport and is activated when they reach their final destination. Such a precise translation pattern is controlled by repressors, which are specifically recruited to transport ribonucleoprotein particles and block translation at different steps. Functional studies have revealed that the inactivation of these repressors, either by pre-localized proteins or in response to conserved signalling pathways, triggers local protein synthesis.
Development | 2012
Caroline Medioni; Kimberly L. Mowry; Florence Besse
Intracellular targeting of mRNAs has long been recognized as a means to produce proteins locally, but has only recently emerged as a prevalent mechanism used by a wide variety of polarized cell types. Localization of mRNA molecules within the cytoplasm provides a basis for cell polarization, thus underlying developmental processes such as asymmetric cell division, cell migration, neuronal maturation and embryonic patterning. In this review, we describe and discuss recent advances in our understanding of both the regulation and functions of RNA localization during animal development.
Development | 2003
Florence Besse; Anne-Marie Pret
Polar cells have been described as pairs of specific follicular cells present at each pole of Drosophila egg chambers. They are required at different stages of oogenesis for egg chamber formation and establishment of both the anteroposterior and planar polarities of the follicular epithelium. We show that definition of polar cell pairs is a progressive process since early stage egg chambers contain a cluster of several polar cell marker-expressing cells at each pole, while as of stage 5, they contain invariantly two pairs of such cells. Using cell lineage analysis, we demonstrate that these pre-polar cell clusters have a polyclonal origin and derive specifically from the polar cell lineage, rather than from that giving rise to follicular cells. In addition, selection of two polar cells from groups of pre-polar cells occurs via an apoptosis-dependent mechanism and is required for correct patterning of the anterior follicular epithelium of vitellogenic egg chambers.
Journal of Cell Biology | 2007
Florence Besse; Sara Mertel; Robert J. Kittel; Carolin Wichmann; Tobias M. Rasse; Stephan J. Sigrist; Anne Ephrussi
Synapses can undergo rapid changes in size as well as in their vesicle release function during both plasticity processes and development. This fundamental property of neuronal cells requires the coordinated rearrangement of synaptic membranes and their associated cytoskeleton, yet remarkably little is known of how this coupling is achieved. In a GFP exon-trap screen, we identified Drosophila melanogaster Basigin (Bsg) as an immunoglobulin domain-containing transmembrane protein accumulating at periactive zones of neuromuscular junctions. Bsg is required pre- and postsynaptically to restrict synaptic bouton size, its juxtamembrane cytoplasmic residues being important for that function. Bsg controls different aspects of synaptic structure, including distribution of synaptic vesicles and organization of the presynaptic cortical actin cytoskeleton. Strikingly, bsg function is also required specifically within the presynaptic terminal to inhibit nonsynchronized evoked vesicle release. We thus propose that Bsg is part of a transsynaptic complex regulating synaptic compartmentalization and strength, and coordinating plasma membrane and cortical organization.
Current Biology | 2014
Caroline Medioni; Mirana Ramialison; Anne Ephrussi; Florence Besse
Neuronal remodeling is essential for the refinement of neuronal circuits in response to developmental cues [1-4]. Although this process involves pruning or retraction of axonal projections followed by axonal regrowth and branching, how these steps are controlled is poorly understood. Drosophila mushroom body (MB) γ neurons provide a paradigm for the study of neuronal remodeling, as their larval axonal branches are pruned during metamorphosis and re-extend to form adult-specific branches [5]. Here, we identify the RNA binding protein Imp as a key regulator of axonal remodeling. Imp is the sole fly member of a conserved family of proteins that bind target mRNAs to promote their subcellular targeting [6-12]. We show that whereas Imp is dispensable for the initial growth of MB γ neuron axons, it is required for the regrowth and ramification of axonal branches that have undergone pruning. Furthermore, Imp is actively transported to axons undergoing developmental remodeling. Finally, we demonstrate that profilin mRNA is a direct and functional target of Imp that localizes to axons and controls axonal regrowth. Our study reveals that mRNA localization machineries are actively recruited to axons upon remodeling and suggests a role of mRNA transport in developmentally programmed rewiring of neuronal circuits during brain maturation.
Development | 2004
Karine Narbonne; Florence Besse; Jeanine Brissard-Zahraoui; Anne-Marie Pret; Denise Busson
The polyhomeotic (ph) gene of Drosophila is a member of the Polycomb group (Pc-G) genes, which are required for maintenance of a repressed state of homeotic gene transcription, which stabilizes cell identity throughout development. The ph gene was recovered in the course of a gain-of-function screen aimed at identifying genes with a role during ovarian follicle formation in Drosophila, a process that involves coordinated proliferation and differentiation of two cell lineages, somatic and germline. Subsequent analysis revealed that ph loss-of-function mutations lead to production of follicles with greater or fewer than the normal number of germ cells associated with reduced proliferation of somatic prefollicular cells, abnormal prefollicular cell encapsulation of germline cysts and an excess of both interfollicular stalk cells and polar cells. Clonal analysis showed that ph function for follicle formation resides specifically in somatic cells and not in the germline. This is thus the first time that a role has been shown for a Pc-G gene during Drosophila folliculogenesis. In addition, we tested mutations in a number of other Pc-G genes, and two of them, Sex combs extra (Sce) and Sex comb on midleg (Scm), also displayed ovarian defects similar to those observed for ph. Our results provide a new model system, the Drosophila ovary, in which the function of Pc-G genes, distinct from that of control of homeotic gene expression, can be explored.
Genes to Cells | 2006
Séverine Martin‐Lannerée; Christelle Lasbleiz; Matthieu Sanial; Sylvaine Fouix; Florence Besse; Hervé Tricoire; Anne Plessis
In human, the myeloid leukemia factor 1 (hMLF1) has been shown to be involved in acute leukemia, and mlf related genes are present in many animals. Despite their extensive representation and their good conservation, very little is understood about their function. In Drosophila, dMLF physically interacts with both the transcription regulatory factor DREF and an antagonist of the Hedgehog pathway, Suppressor of Fused, whose over‐expression in the fly suppresses the toxicity induced by polyglutamine. No connection between these data has, however, been established. Here, we show that dmlf is widely and dynamically expressed during fly development. We isolated and analyzed the first dmlf mutants: embryos lacking maternal dmlf product have a low viability with no specific defect, and dmlf‐– adults display weak phenotypes. We monitored dMLF subcellular localization in the fly and cultured cells. We were able to show that, although generally nuclear, dMLF can also be cytoplasmic, depending on the developmental context. Furthermore, two differently spliced variants of dMLF display differential subcellular localization, allowing the identification of regions of dMLF potentially important for its localization. Finally, we demonstrate that dMLF can act developmentally and postdevelopmentally to suppress neurodegeneration and premature aging in a cerebellar ataxia model.
British Journal of Cancer | 2001
M A Le Frère-Belda; D Cappellen; Ahmad Daher; S Gil-Diez-de-Medina; Florence Besse; Claude C. Abbou; Jean Paul Thiery; Elie Serge Zafrani; D.K. Chopin; François Radvanyi
The p15 gene which encodes a cyclin-dependent kinase inhibitor, is located in the 9p21 chromosomal region that is frequently deleted in human bladder transitional cell carcinomas (TCCs). The aim of the present paper is to study the potential involvement of the p15 gene in the evolution of TCCs. p15 mRNA expression was investigated by semi-quantitative RT-PCR in a series of 75 TCCs, 13 bladder cell lines and 6 normal bladder urothelia by semi-quantitative RT-PCR. p15 was expressed in the normal urothelium but p15 mRNA levels were significantly decreased in 66% of the superficial (Ta-T1) TCCs (P = 0.0015). In contrast, in muscle-invasive (T2-T4) TCCs, p15 expression differed widely between samples. p16 mRNA levels were also studied and there was no correlation between p15 and p16 mRNA levels, thus indicating that the two genes were regulated independently. Lower p15 expression in superficial tumours did not reflect a switch from quiescence to proliferative activity as normal proliferative urothelial controls did not present decreased p15 mRNA levels relative to quiescent normal urothelia. We further investigated the mechanisms underlying p15 down regulation. Homozygous deletions of the p15 gene, also involving the contiguous p16 gene, were observed in 42% of the TCCs with decreased p15 expression. No hypermethylation at multiple methylation-sensitive restriction sites in the 5′-CpG island of p15 was encountered in the remaining tumours. Our data suggest that decreased expression of p15 may be an important step in early neoplastic transformation of the urothelium and that a mechanism other than homozygous deletions or hypermethylation, may be involved in p15 down regulation.
Developmental Dynamics | 2005
Florence Besse; Denise Busson; Anne-Marie Pret
The genetic analysis of Drosophila adult oogenesis has provided insights into the molecular mechanisms that control cell proliferation, differentiation, migration, and intercellular signaling. However, little is known about the larval and pupal cellular events leading to the formation of the highly organized adult ovary, which is composed of ovarioles each containing germline cells enveloped by specialized somatic cells. We describe here the presence of ovarioles devoid of any germ cells in adult females mutant for fused, which encodes a Hedgehog signal transducing serine/threonine kinase. We show that this phenotype corresponds to a requirement for fused function for the organization of germ cells with respect to ovarian somatic cells during ovariole formation specifically during pupal stages and provide some evidence by means of clonal analysis suggesting that fused function may be necessary in the germline. hedgehog is expressed specifically in somatic terminal filament cells in pupal ovaries, and females bearing hedgehog strong loss‐of‐function mutations also exhibit aberrant germ cell distribution and formation of agametic ovarioles. These results indicate a positive role for Fused in the transduction of somatic Hedgehog signaling instructing ovariole morphogenesis. We also provide evidence for the use of noncanonical Hedgehog signal transducer(s) within germline cells. Developmental Dynamics 234:422–431, 2005.
Nature Communications | 2018
Anouar Khayachi; Carole Gwizdek; Gwenola Poupon; Damien Alcor; Magda Chafai; Frédéric Cassé; Thomas Maurin; Marta Prieto; Alessandra Folci; Fabienne De Graeve; Sara Castagnola; Romain Gautier; Lenka Schorova; Céline Loriol; Marie Pronot; Florence Besse; Frédéric Brau; Emmanuel Deval; Barbara Bardoni; Stéphane Martin
Fragile X syndrome (FXS) is the most frequent inherited cause of intellectual disability and the best-studied monogenic cause of autism. FXS results from the functional absence of the fragile X mental retardation protein (FMRP) leading to abnormal pruning and consequently to synaptic communication defects. Here we show that FMRP is a substrate of the small ubiquitin-like modifier (SUMO) pathway in the brain and identify its active SUMO sites. We unravel the functional consequences of FMRP sumoylation in neurons by combining molecular replacement strategy, biochemical reconstitution assays with advanced live-cell imaging. We first demonstrate that FMRP sumoylation is promoted by activation of metabotropic glutamate receptors. We then show that this increase in sumoylation controls the homomerization of FMRP within dendritic mRNA granules which, in turn, regulates spine elimination and maturation. Altogether, our findings reveal the sumoylation of FMRP as a critical activity-dependent regulatory mechanism of FMRP-mediated neuronal function.Fragile X syndrome patients display intellectual disability and autism, caused by mutations in the RNA-binding protein fragile X mental retardation protein (FMRP). Here, the authors show that FMRP sumoylation is required for regulating spine density and maturation.