Florence Charlot
Institut national de la recherche agronomique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Florence Charlot.
Nucleic Acids Research | 2006
Didier G. Schaefer; Florence Charlot; Fabien Nogué
MSH2 is a central component of the mismatch repair pathway that targets mismatches arising during DNA replication, homologous recombination (HR) and in response to genotoxic stresses. Here, we describe the function of MSH2 in the moss Physcomitrella patens, as deciphered by the analysis of loss of function mutants. Ppmsh2 mutants display pleiotropic growth and developmental defects, which reflect genomic instability. Based on loss of function of the APT gene, we estimated this mutator phenotype to be at least 130 times higher in the mutants than in wild type. We also found that MSH2 is involved in some but not all the moss responses to genotoxic stresses we tested. Indeed, the Ppmsh2 mutants were more tolerant to cisplatin and show higher sensitivity to UV-B radiations. PpMSH2 gene involvement in HR was studied by assessing gene targeting (GT) efficiency with homologous and homeologous sequences. GT efficiency with homologous sequences was slightly decreased in the Ppmsh2 mutant compared with wild type. Strikingly GT efficiency with homeologous sequences decreased proportionally to sequence divergence in the wild type whereas it remained unaffected in the mutants. Those results demonstrate the role of PpMSH2 in the maintenance of genome integrity and in homologous and homeologous recombination.
Plant Science | 1994
Pierre Berthomieu; Christophe Béclin; Florence Charlot; Claire Doré; Lise Jouanin
Abstract We have developed a transformation procedure using both disarmed and wild-type Agrobacterium tumefaciens strains for a rapid-cycling cabbage genotype ( Brassica oleracea var. capitata ). This method is based on the fact that the wild-type A. tumefaciens strain (82.139) can induce shooty tumors in rapid-cycling cabbage. No special regeneration medium was required and no selection pressure was exerted at any stage of the transformation procedure; the transformants were identified by screening for β-glucuronidase (GUS) activity with a histological assay. Southern analyses ascertained that the GUS-expressing plants contained the T-DNA carried by the disarmed strain but not the T-DNA of the wild-type A. tumefaciens strain. One transgenic plant was obtained for an average of 25 plants inoculated. Southern analysis showed that most of the transgenic plants, under these non-selective conditions, proved to be chimeric. Regeneration was established to be of pluricellular origin. The transgenic plants transmitted their T-DNA inserts to the progeny.
DNA Repair | 2010
Didier G. Schaefer; F. Delacote; Florence Charlot; Nathalie Vrielynck; A. Guyon-Debast; S. Le Guin; Jean-Marc Neuhaus; Marie-Pascale Doutriaux; Fabien Nogué
Gene targeting (GT) is a major tool for basic and applied research during which the transforming DNA, which shares sequence homology with a chromosomal target, integrates at the corresponding locus by homologous recombination (HR). In eukaryotes, GT recruits enzymes from the HR-mediated double strand break repair pathway. Different mechanisms of HR have been described which depend on the Rad52 epistasis group of genes, but which specific mechanism is used by the cell for GT remains unclear. In Saccharomyces cerevisiae, the RAD52 protein is essential for GT, and the RAD51 protein plays a minor role. In filamentous fungi and animal cells, however, GT depends on RAD51 and is weakly affected by suppression of RAD52. Genetic evidence also indicates that the non-homologous end-joining pathway of DSB repair has a negative impact on GT efficiencies, but how the balance between these two pathways is controlled is poorly understood. Here, we have examined the role of RAD51 in the only plant that exhibits high GT frequencies, the model bryophyte Physcomitrella patens. Our results show that the two RAD51 proteins have partially redundant functions in the maintenance of genome integrity and resistance to ionizing radiation. Furthermore, we demonstrate that loss of function of the two RAD51 proteins completely abolishes GT and strongly increases illegitimate integration rates in this moss. These findings demonstrate for the first time in plant the critical role of RAD51 in controlling the balance between targeted and random integration events observed upon transgenesis, and confirm that P. patens is a particularly interesting tool for studying GT in higher eukaryotes.
Nucleic Acids Research | 2012
Yasuko Kamisugi; Didier G. Schaefer; Jaroslav Kozak; Florence Charlot; Nathalie Vrielynck; Marcela Holá; Karel J. Angelis; Andrew C. Cuming; Fabien Nogué
The moss Physcomitrella patens is unique among plant models for the high frequency with which targeted transgene insertion occurs via homologous recombination. Transgene integration is believed to utilize existing machinery for the detection and repair of DNA double-strand breaks (DSBs). We undertook targeted knockout of the Physcomitrella genes encoding components of the principal sensor of DNA DSBs, the MRN complex. Loss of function of PpMRE11 or PpRAD50 strongly and specifically inhibited gene targeting, whilst rates of untargeted transgene integration were relatively unaffected. In contrast, disruption of the PpNBS1 gene retained the wild-type capacity to integrate transforming DNA efficiently at homologous loci. Analysis of the kinetics of DNA-DSB repair in wild-type and mutant plants by single-nucleus agarose gel electrophoresis revealed that bleomycin-induced fragmentation of genomic DNA was repaired at approximately equal rates in each genotype, although both the Ppmre11 and Pprad50 mutants exhibited severely restricted growth and development and enhanced sensitivity to UV-B and bleomycin-induced DNA damage, compared with wild-type and Ppnbs1 plants. This implies that while extensive DNA repair can occur in the absence of a functional MRN complex; this is unsupervised in nature and results in the accumulation of deleterious mutations incompatible with normal growth and development.
Biotechnology Letters | 2007
Florence Charlot; Sandrine Choinard; Didier G. Schaefer; Fabien Nogué
The moss, Physcomitrella patens, is a novel tool in plant functional genomics due to its exceptionally high gene targeting efficiency that is so far unique for plants. To determine if this high gene targeting efficiency is exclusive to P. patens or if it is a common feature to mosses, we estimated gene-targeting efficiency in another moss, Ceratodon purpureus. We transformed both mosses with replacement vectors corresponding to the adenine phosphoribosyl transferase (APT) reporter gene. We achieved a gene targeting efficiency of 20.8% for P. patens and 1.05% for C. purpureus. Our findings support the hypothesis that efficient gene targeting could be a general mechanism of Bryophyte transformation.
Plant Physiology | 2008
David Liénard; Gaëlle Durambur; Marie-Christine Kiefer-Meyer; Fabien Nogué; Laurence Menu-Bouaouiche; Florence Charlot; Véronique Gomord; Jean-Paul Lassalles
Although aquaporins (AQPs) have been shown to increase membrane water permeability in many cell types, the physiological role of this increase was not always obvious. In this report, we provide evidence that in the leafy stage of development (gametophore) of the moss Physcomitrella patens, AQPs help to replenish more rapidly the cell water that is lost by transpiration, at least if some water is in the direct vicinity of the moss plant. Three AQP genes were cloned in P. patens: PIP2;1, PIP2;2, and PIP2;3. The water permeability of the membrane was measured in protoplasts from leaves and protonema. A significant decrease was measured in protoplasts from leaves and protonema of PIP2;1 or PIP2;2 knockouts but not the PIP2;3 knockout. No phenotype was observed when knockout plants were grown in closed petri dishes with ample water supply. Gametophores isolated from the wild type and the pip2;3 mutant were not sensitive to moderate water stress, but pip2;1 or pip2;2 gametophores expressed a water stress phenotype. The knockout mutant leaves were more bent and twisted, apparently suffering from an important loss of cellular water. We propose a model to explain how the AQPs PIP2;1 and PIP2;2 delay leaf dessication in a drying atmosphere. We suggest that in ancestral land plants, some 400 million years ago, APQs were already used to facilitate the absorption of water.
Plant Biotechnology Journal | 2017
Cécile Collonnier; Aline Epert; Kostlend Mara; François Maclot; Anouchkla Guyon-Debast; Florence Charlot; Charles I. White; Didier G. Schaefer; Fabien Nogué
Summary The ability to address the CRISPR‐Cas9 nuclease complex to any target DNA using customizable single‐guide RNAs has now permitted genome engineering in many species. Here, we report its first successful use in a nonvascular plant, the moss Physcomitrella patens. Single‐guide RNAs (sgRNAs) were designed to target an endogenous reporter gene, PpAPT, whose inactivation confers resistance to 2‐fluoroadenine. Transformation of moss protoplasts with these sgRNAs and the Cas9 coding sequence from Streptococcus pyogenes triggered mutagenesis at the PpAPT target in about 2% of the regenerated plants. Mainly, deletions were observed, most of them resulting from alternative end‐joining (alt‐EJ)‐driven repair. We further demonstrate that, in the presence of a donor DNA sharing sequence homology with the PpAPT gene, most transgene integration events occur by homology‐driven repair (HDR) at the target locus but also that Cas9‐induced double‐strand breaks are repaired with almost equal frequencies by mutagenic illegitimate recombination. Finally, we establish that a significant fraction of HDR‐mediated gene targeting events (30%) is still possible in the absence of PpRAD51 protein, indicating that CRISPR‐induced HDR is only partially mediated by the classical homologous recombination pathway.
Nucleic Acids Research | 2014
Florence Charlot; Liudmila Chelysheva; Yasuko Kamisugi; Nathalie Vrielynck; Anouchka Guyon; Aline Epert; Sylvia Le Guin; Didier G. Schaefer; Andrew C. Cuming; Mathilde Grelon; Fabien Nogué
The eukaryotic RecA homologue Rad51 is a key factor in homologous recombination and recombinational repair. Rad51-like proteins have been identified in yeast (Rad55, Rad57 and Dmc1), plants and vertebrates (RAD51B, RAD51C, RAD51D, XRCC2, XRCC3 and DMC1). RAD51 and DMC1 are the strand-exchange proteins forming a nucleofilament for strand invasion, however, the function of the paralogues in the process of homologous recombination is less clear. In yeast the two Rad51 paralogues, Rad55 and Rad57, have been shown to be involved in somatic and meiotic HR and they are essential to the formation of the Rad51/DNA nucleofilament counterbalancing the anti-recombinase activity of the SRS2 helicase. Here, we examined the role of RAD51B in the model bryophyte Physcomitrella patens. Mutant analysis shows that RAD51B is essential for the maintenance of genome integrity, for resistance to DNA damaging agents and for gene targeting. Furthermore, we set up methods to investigate meiosis in Physcomitrella and we demonstrate that the RAD51B protein is essential for meiotic homologous recombination. Finally, we show that all these functions are independent of the SRS2 anti-recombinase protein, which is in striking contrast to what is found in budding yeast where the RAD51 paralogues are fully dependent on the SRS2 anti-recombinase function.
Plant Molecular Biology | 2012
Julien Vivancos; Lara Spinner; Christelle Mazubert; Florence Charlot; Nicolas Paquet; Vincent Thareau; Michel Dron; Fabien Nogué; Céline Charon
The shoot represents the basic body plan in land plants. It consists of a repeated structure composed of stems and leaves. Whereas vascular plants generate a shoot in their diploid phase, non-vascular plants such as mosses form a shoot (called the gametophore) in their haploid generation. The evolution of regulatory mechanisms or genetic networks used in the development of these two kinds of shoots is unclear. TERMINAL EAR1-like genes have been involved in diploid shoot development in vascular plants. Here, we show that disruption of PpTEL1 from the moss Physcomitrella patens, causes reduced protonema growth and gametophore initiation, as well as defects in gametophore development. Leafy shoots formed on ΔTEL1 mutants exhibit shorter stems with more leaves per shoot, suggesting an accelerated leaf initiation (shortened plastochron), a phenotype shared with the Poaceae vascular plants TE1 and PLA2/LHD2 mutants. Moreover, the positive correlation between plastochron length and leaf size observed in ΔTEL1 mutants suggests a conserved compensatory mechanism correlating leaf growth and leaf initiation rate that would minimize overall changes in plant biomass. The RNA-binding protein encoded by PpTEL1 contains two N-terminus RNA-recognition motifs, and a third C-terminus non-canonical RRM, specific to TEL proteins. Removal of the PpTEL1 C-terminus (including this third RRM) or only 16–18 amino acids within it seriously impairs PpTEL1 function, suggesting a critical role for this third RRM. These results show a conserved function of the RNA-binding PpTEL1 protein in the regulation of shoot development, from early ancestors to vascular plants, that depends on the third TEL-specific RRM.
Methods | 2017
Cécile Collonnier; Anouchka Guyon-Debast; François Maclot; Kostlend Mara; Florence Charlot; Fabien Nogué
Beyond its predominant role in human and animal therapy, the CRISPR-Cas9 system has also become an essential tool for plant research and plant breeding. Agronomic applications rely on the mastery of gene inactivation and gene modification. However, if the knock-out of genes by non-homologous end-joining (NHEJ)-mediated repair of the targeted double-strand breaks (DSBs) induced by the CRISPR-Cas9 system is rather well mastered, the knock-in of genes by homology-driven repair or end-joining remains difficult to perform efficiently in higher plants. In this review, we describe the different approaches that can be tested to improve the efficiency of CRISPR-induced gene modification in plants, which include the use of optimal transformation and regeneration protocols, the design of appropriate guide RNAs and donor templates and the choice of nucleases and means of delivery. We also present what can be done to orient DNA repair pathways in the target cells, and we show how the moss Physcomitrella patens can be used as a model plant to better understand what DNA repair mechanisms are involved, and how this knowledge could eventually be used to define more performant strategies of CRISPR-induced gene knock-in.