Florence Gayet
University of Toulouse
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Florence Gayet.
Chemistry: A European Journal | 2014
Xuewei Zhang; Andrés F. Cardozo; Si Chen; Wenjing Zhang; Carine Julcour; Muriel Lansalot; Jean-François Blanco; Florence Gayet; Henri Delmas; Bernadette Charleux; Eric Manoury; Franck D'Agosto; Rinaldo Poli
Water-borne phosphine-functionalized core-cross-linked micelles (CCM) consisting of a hydrophobic core and a hydrophilic shell were obtained as stable latexes by reversible addition-fragmentation chain transfer (RAFT) in water in a one-pot, three-step process. Initial homogeneous aqueous-phase copolymerization of methacrylic acid (MAA) and poly(ethylene oxide) methyl ether methacrylate (PEOMA) is followed by copolymerization of styrene (S) and 4-diphenylphosphinostyrene (DPPS), yielding P(MAA-co-PEOMA)-b-P(S-co-DPPS) amphiphilic block copolymer micelles (M) by polymerization-induced self-assembly (PISA), and final micellar cross-linking with a mixture of S and diethylene glycol dimethacrylate. The CCM were characterized by dynamic light scattering and NMR spectroscopy to evaluate size, dispersity, stability, and the swelling ability of various organic substrates. Coordination of [Rh(acac)(CO)2 ] (acac=acetylacetonate) to the core-confined phosphine groups was rapid and quantitative. The CCM and M latexes were then used, in combination with [Rh(acac)(CO)2 ], to catalyze the aqueous biphasic hydroformylation of 1-octene, in which they showed high activity, recyclability, protection of the activated Rh center by the polymer scaffold, and low Rh leaching. The CCM latex gave slightly lower catalytic activity but significantly less Rh leaching than the M latex. A control experiment conducted in the presence of the sulfoxantphos ligand pointed to the action of the CCM as catalytic nanoreactors with substrate and product transport into and out of the polymer core, rather than as a surfactant in interfacial catalysis.
Chemcatchem | 2013
Andrés F. Cardozo; Eric Manoury; Carine Julcour; Jean-François Blanco; Henri Delmas; Florence Gayet; Rinaldo Poli
A series of well‐defined polystyrene‐supported tertiary phosphine ligands were prepared by copper‐catalyzed atom transfer radical polymerization (ATRP), involving direct copolymerization of styrene and 4‐diphenylphosphinostyrene (or 4‐styryldiphenylphosphine, SDPP). Copolymerization of the two monomers at different molar ratios showed a decreasing level of control as the SDPP molar fraction (fSDPP) increased. A satisfactory level of control was achieved for fSDPP≤0.25 such that there was a constant concentration of growing “living chains”, and linear Mn growth with conversion and low dispersity. Copper‐free polymers with different chain lengths were prepared and tested as polymeric ligands in the rhodium‐catalyzed hydroformylation of 1‐octene. The polymeric ligands yielded higher linear/branched selectivity and lower activity relative to PPh3 at the same P/Rh ratio. The selectivity increased slightly as a function of the polymer chain length.
Chemistry: A European Journal | 2016
Si Chen; Florence Gayet; Eric Manoury; Ahmad Joumaa; Muriel Lansalot; Franck D'Agosto; Rinaldo Poli
Stable latexes of hierarchically organized core-cross-linked polymer micelles that are functionalized at the core with triphenylphosphine (TPP@CCM) have been investigated by NMR spectroscopic analysis at both natural (ca. pH 5) and strongly basic (pH 13.6) pH values after core swelling with toluene. The core-shell interface structuring forces part of the hydrophilic poly(ethylene oxide) (PEO) chains to reside inside the hydrophobic core at both pH values. Loading the particle cores with [Rh(acac)(CO)2 ] (acac=acetylacetonate) at various Rh/P ratios yielded polymer-supported [Rh(acac)(CO)(TPP)] (TPP=triphenylphosphine). The particle-to-particle rhodium migration is very fast at natural pH, but slows down dramatically at high pH, whereas the size distribution of the nanoreactors remains unchanged. The slow migration at pH 13.6 leads to the generation of polymer-anchored [Rh(OH)(CO)(TPP)2 ], which is also generated immediately upon the addition of NaOH to the particles with a [Rh(acac)(CO)] loading of 50 %. Similarly, treatment of the same particles with NaCl yielded polymer-anchored [RhCl(CO)(TPP)2 ]. Interparticle coupling occurs during these rapid processes. These experiments prove that the major contribution to metal migration is direct core-core contact. The slow migration at the high pH value, however, must result from a pathway that does not involve core-core contact. The facile penetration of the polymer cores by NaOH and NaCl results from the presence of shell-linked poly(ethylene oxide) methyl ether functions both outside and inside the polymer core-shell interface.
Archive | 2015
Rinaldo Poli; Si Chen; Xuewei Zhang; Andrés F. Cardozo; Muriel Lansalot; Franck D’Agosto; Bernadette Charleux; Eric Manoury; Florence Gayet; Carine Julcour; Jean-François Blanco; Laurie Barthe; Henri Delmas
Controlled radical polymerization has recently been used to develop polymers engineered for applications as catalytic nanoreactors. In this contribution, we present the joint development, in our laboratories, of core-cross-linked micelles (CCM) for application under aqueous biphasic conditions through the micellar approach, using triphenylphosphine (TPP) as polymer-anchored ligand and rhodium as catalytic metal for the hydroformylation of 1-octene as a model α-olefin. The polymers were synthesized by a one-pot convergent approach using RAFT as controlling method in water, making use of the polymerization-induced self-assembly (PISA) principle. The article will also show the polymer properties in terms of size, polydispersity, swelling, metal coordination and exchange, and interpenetration. It will also illustrate our initial catalytic studies with focus on the effect of the polymer architecture (ligand nature, ligand density, core size, nature of cross-linking) and of the stirring rate on the catalytic performance (turnover frequency) and catalyst leaching.
Polymers | 2016
Si Chen; Eric Manoury; Florence Gayet; Rinaldo Poli
A well-defined amphiphilic core-shell polymer functionalized with bis(p-methoxy-phenylphosphino)phenylphosphine (BMOPPP) in the nanogel (NG) core has been obtained by a convergent RAFT polymerization in emulsion. This BMOPPP@NG and the previously-reported TPP@NG (TPP = triphenylphosphine) and core cross-linked micelles (L@CCM; L = TPP, BMOPPP) having a slightly different architecture were loaded with [Rh(acac)(CO)2] or [RhCl(COD)]2 to yield [Rh(acac)(CO)(L@Pol)] or [RhCl(COD)(L@Pol)] (Pol = CCM, NG). The interparticle metal migration from [Rh(acac)(CO)(TPP@NG)] to TPP@NG is fast at natural pH and much slower at high pH, the rate not depending significantly on the polymer architecture (CCM vs. NG). The cross-exchange using [Rh(acac)(CO)(BMOPPP@Pol)] and [RhCl(COD)(TPP@Pol)] (Pol = CCM or NG) as reagents at natural pH is also rapid (ca. 1 h), although slower than the equivalent homogeneous reaction on the molecular species (<5 min). On the other hand, the subsequent rearrangement of [Rh(acac)(CO)(TPP@Pol)] and [RhCl(COD)(TPP@Pol)] within the TPP@Pol core and of [Rh(acac)(CO)(BMOPPP@Pol)] and [RhCl(COD)(BMOPPP@Pol)] within the BMOPPP@Pol core, leading respectively to [RhCl(CO)(TPP@Pol)2] and [RhCl(CO)(BMOPPP@Pol)2], is much more rapid (<30 min) than on the corresponding homogeneous process with the molecular species (>24 h).
Polymers | 2017
Sanjib Banerjee; Ekaterina V. Bellan; Florence Gayet; Antoine Debuigne; Christophe Detrembleur; Rinaldo Poli; Bruno Ameduri; Vincent Ladmiral
The organometallic-mediated radical polymerization (OMRP) of vinyl acetate (VAc) and its OMR copolymerization (OMRcoP) with tert-butyl 2-trifluoromethylacrylate (MAF-TBE) mediated by Co(SAL)2 (SAL = 2-formylphenolato or deprotonated salicylaldehyde) produced relatively well-defined PVAc and poly(VAc-alt-MAF-TBE) copolymers at moderate temperature (<40 °C) in bulk. The resulting alternating copolymer was characterized by 1H-, 13C- and 19F-nuclear magnetic resonance (NMR) spectroscopies, and by size exclusion chromatography. The linear first-order kinetic plot, the linear evolutions of the molar mass with total monomer conversion, and the relatively low dispersity (Đ~1.55) of the resulting copolymers suggest that this cobalt complex provides some degree of control over the copolymerization of VAc and MAF-TBE. Compared to the previously investigated cobalt complex OMRP mediators having a fully oxygen-based first coordination sphere, this study emphasizes a few peculiarities of Co(SAL)2: a lower ability to trap radical chains as compared to Co(acac)2 and the absence of catalytic chain transfer reactions, which dominates polymerizations carried in the presence of 9-oxyphenalenone cobalt derivative.
Chemistry: A European Journal | 2018
Roberto Morales-Cerrada; Christophe Fliedel; Jean-Claude Daran; Florence Gayet; Vincent Ladmiral; Bruno Ameduri; Rinaldo Poli
Thermal decarbonylation of the acyl compounds [Mn(CO)5 (CORF )] (RF =CF3 , CHF2 , CH2 CF3 , CF2 CH3 ) yielded the corresponding alkyl derivatives [Mn(CO)5 (RF )], some of which have not been previously reported. The compounds were fully characterized by analytical and spectroscopic methods and by several single-crystal X-ray diffraction studies. The solution-phase IR characterization in the CO stretching region, with the assistance of DFT calculations, has allowed the assignment of several weak bands to vibrations of the [Mn(12 CO)4 (eq-13 CO)(RF )] and [Mn(12 CO)4 (ax-13 CO)(RF )] isotopomers and a ranking of the RF donor power in the order CF3 <CHF2 <CH2 CF3 ≈CF2 CH3 . The homolytic Mn-RF bond cleavage in [Mn(CO)5 (RF )] at various temperatures under saturation conditions with trapping of the generated RF radicals by excess tris(trimethylsilyl)silane yielded activation parameters ΔH≠ and ΔS≠ that are believed to represent close estimates of the homolytic bond dissociation thermodynamic parameters. These values are in close agreement with those calculated in a recent DFT study (J. Organomet. Chem. 2018, 864, 12-18). The ability of these complexes to undergo homolytic Mn-RF bond cleavage was further demonstrated by the observation that [Mn(CO)5 (CF3 )] (the compound with the strongest Mn-RF bond) initiated the radical polymerization of vinylidene fluoride (CH2 =CF2 ) to produce poly(vinylidene fluoride) in good yields by either thermal (100 °C) or photochemical (UV or visible light) activation.
Archive | 2017
Eric Manoury; Florence Gayet; Franck D’Agosto; Muriel Lansalot; Henri Delmas; Carine Julcour; Jean-François Blanco; Laurie Barthe; Rinaldo Poli
Biphasic homogeneous protocols are attractive for catalyzed transformations in industry, especially when conducted with water as the catalyst phase as exemplified by the large-scale Rhone-Poulenc/Ruhrchemie hydroformylation process, but can only be applied when the substrate is sufficiently soluble in the aqueous phase to sustain sufficiently fast mass transport . Different solutions to reduce mass transport limitations include the use of additives to increase the substrate solubility in water or increase the water/organic interface, anchoring the catalyst onto a lower critical solution temperature (LCST) polymer to implement thermomorphic behavior, and anchoring the catalyst to the hydrophobic part of surfactants or amphiphilic block copolymers that self-assemble in the form of micelles in water. The use of catalytic micelles appears as the most attractive approach but is limited by the potential formation of stable emulsions and by loss of free macromolecules during separation. These limitations are removed by cross-linking the macromolecules into a unimolecular nanoreactor. This chapter covers the emerging area of unimolecular catalytic nanoreactors, focusing on transition metal-based catalytic applications. It will also present the synthesis of new types of catalytic unimolecular nanoreactors developed in our laboratories, conceived to function on the basis of the micellar catalysis principle. These nanoreactors consist of either core-cross-linked micelle (CCM) or amphiphilic functionalized nanogels (NG). The proof of principle of their catalytic performance in the aqueous biphasic hydroformylation of 1-octene will also be presented. The catalyst confinement objective which is highlighted in this chapter is process optimization in terms of the catalyst phase recovery and recycling.
Journal of Catalysis | 2015
Andrés F. Cardozo; Carine Julcour; Laurie Barthe; Jean-François Blanco; Si Chen; Florence Gayet; Eric Manoury; Xuewei Zhang; Muriel Lansalot; Bernadette Charleux; Franck D’Agosto; Rinaldo Poli; Henri Delmas
Polymer | 2015
Si Chen; Andrés F. Cardozo; Carine Julcour; Jean-François Blanco; Laurie Barthe; Florence Gayet; Muriel Lansalot; Franck D'Agosto; Henri Delmas; Eric Manoury; Rinaldo Poli