Florence Goutail
Centre national de la recherche scientifique
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Florence Goutail.
Journal of Geophysical Research | 1989
D. M. Cunnold; Joseph M. Zawodny; William P. Chu; Jean-Pierre Pommereau; Florence Goutail; J. Lenoble; M. P. McCormick; Robert E. Veiga; D. Murcray; N. Iwagami; K. Shibasaki; P. C. Simon; W. Peetermans
Stratospheric aerosol and gas experiment (SAGE) II satellite-borne measurements of the stratospheric profiles of NO2 at sunset have been made since October 1984. The measurements are made by solar occultation and are derived from the difference between the absorptions in narrow bandwidth channels centered at 0.448 and 0.453 μm. The precision of the profiles is approximately 5% between an upper altitude of 36 km and a latitude-dependent lower altitude at which the mixing ratio is 4 ppbv (for example, approximately 25 km at mid-latitudes and 29 km in the tropics). At lower altitudes the precision is approximately 0.2 ppbv. The profiles are nominally smoothed over 1 km except at altitudes where the extinction is less than 2×10−5/km. (approximately 38 km altitude), where 5 km smoothing is employed. The profile measurement noise has an autocorrelation distance of 3–5 km for 1 km smoothing and more than 10 km for 5 km smoothing. The absolute accuracy of the measurements is estimated to be 15% based on uncertainties in the absorption cross-sections and their temperature dependence. Comparisons against two sets of balloon profiles and atmospheric trace molecules spectroscopy experiment (ATMOS) measurements show agreement within approximately 10% over the altitude range of 23 to 37 km at mid-latitudes. SAGE II NO2 measurements are calculated to be approximately 20% smaller at the mixing ratio peak than average limb infrared monitor of the stratosphere (LIMS) measurements in the tropics in 1979. They show acceptable agreement with SAGE I sunset NO2 measurements in the tropics in 1979–1981 when the limited resolution and precision of the SAGE I measurements and the differences between the two measurement techniques are considered.
Journal of Geophysical Research | 2008
Edward Celarier; Ellen Brinksma; James F. Gleason; J. P. Veefkind; A. Cede; Jay R. Herman; Dimitri V. Ionov; Florence Goutail; Jean-Pierre Pommereau; J.-C. Lambert; M. Van Roozendael; Gaia Pinardi; F. Wittrock; A. Schönhardt; Andreas Richter; Ow Ibrahim; Thomas Wagner; Bojan Bojkov; George H. Mount; E. Spinei; C.M. Chen; Thomas J. Pongetti; Stanley P. Sander; E. J. Bucsela; Mark Wenig; Daan P. J. Swart; H. Volten; M. Kroon; Pieternel F. Levelt
[1] We review the standard nitrogen dioxide (NO2) data product (Version 1.0.), which is based on measurements made in the spectral region 415–465 nm by the Ozone Monitoring Instrument (OMI) on the NASA Earth Observing System-Aura satellite. A number of ground- and aircraft-based measurements have been used to validate the data product’s three principal quantities: stratospheric, tropospheric, and total NO2 column densities under nearly or completely cloud-free conditions. The validation of OMI NO2 is complicated by a number of factors, the greatest of which is that the OMI observations effectively average the NO2 over its field of view (minimum 340 km 2 ), while a ground-based instrument samples at a single point. The tropospheric NO2 field is often very inhomogeneous, varying significantly over tens to hundreds of meters, and ranges from 10 16 cm � 2 over urban and industrial areas. Because of OMI’s areal averaging, when validation measurements are made near NO2 sources the OMI measurements are expected to underestimate the ground-based, and this is indeed seen. Further, we use several different instruments, both new and mature, which might give inconsistent NO2 amounts; the correlations between nearby instruments is 0.8–0.9. Finally, many of the validation data sets are quite small and span a very short length of time; this limits the statistical conclusions that can be drawn from them. Despite these factors, good agreement is generally seen between the OMI and ground-based measurements, with OMI stratospheric NO2 underestimated by about 14% and total and tropospheric columns underestimated by 15–30%. Typical correlations between OMI NO2 and ground-based measurements are generally >0.6.
Journal of Geophysical Research | 1995
D. J. Hofmann; Paolo Bonasoni; Martine De Mazière; Franco Evangelisti; Giorgio Giovanelli; Aaron Goldman; Florence Goutail; Jerald W. Harder; R. O. Jakoubek; P. V. Johnston; Jim Kerr; W. Andrew Matthews; Tom Mcelroy; Richard McKenzie; George H. Mount; U. Platt; Jean-Pierre Pommereau; Alain Sarkissian; Paul C. Simon; Susan Solomon; J. Stutz; Alan Thomas; Michel Van Roozendael; Edmund Wu
During the period May 12–23, 1992, seven groups from seven countries met in Lauder, New Zealand, to intercompare their remote sensing instruments for the measurement of atmospheric column NO2 from the surface. The purpose of the intercomparison was to determine the degree of intercomparability and to qualify instruments for use in the Network for the Detection of Stratospheric Change (NDSC). Three of the instruments which took part in the intercomparison are slated for deployment at primary NDSC sites. All instruments were successful in obtaining slant column NO2 amounts at sunrise and sunset on most of the 12 days of the intercomparison. The group as a whole was able to make measurements of the 90° solar zenith angle slant path NO2 column amount that agreed to about ±10% most of the time; however, the sensitivity of the individual measurements varied considerably. Part of the sensitivity problem for these measurements is the result of instrumentation, and part is related to the data analysis algorithms used. All groups learned a great deal from the intercomparison and improved their results considerably as a result of this exercise.
Journal of Atmospheric Chemistry | 1999
Florence Goutail; J.-P. Pommereau; C. Phillips; C. Deniel; Alain Sarkissian; Franck Lefèvre; E. Kyrö; Markku Rummukainen; P. Ericksen; S. B. Andersen; B.-A. Kaastad-Hoiskar; G. Braathen; V. Dorokhov; V.U. Khattatov
The total ozone reduction in the Arctic during the winters of 1993/94 and 1994/95 has been evaluated using the ground-based total ozone measurements of five SAOZ spectrometers distributed in the Arctic and from number density profiles of a balloon-borne version of the instrument. The ozone change resulting from transport has been removed using a 3D Chemistry Transport Model (CTM) run without chemistry. A cumulative total ozone depletion at the end of winter in March of 18% ± 4% in 1994 and of 32% ± 4% in 1995 was observed within the polar vortex, and of 15% ± 4% in both years outside the vortex. This evaluation is not sensitive to the vertical transport in the model. The periods, locations and altitudes at which ozone loss occurred were tightly connected to temperatures lower than NAT condensation temperature. The maximum loss was observed at 50 hPa in 1994 and lower, 60-80 hPa, in 1995. Half of the depletion in 1994 and three quarters in 1995 occurred during the early winter, showing that a late final warming is not a prerequisite for large ozone destruction in the northern hemisphere. The timing, the geographical location and the altitude of the ozone losses are well captured by the 3D CTM photochemical model using current chemistry, but its amplitude at low sun during the early winter, is underestimated. The model simulations also capture the early season reductions observed outside the vortex. This suggests that the losses occurred in situ in the early winter, when low temperatures are frequent, and not later in March, when ozone is most reduced inside the vortex, which would be the case if leakage from the vortex was the cause of the depletion.
Journal of Geophysical Research | 2004
C. S. Haley; Samuel Brohede; Christopher E. Sioris; Erik Griffioen; Donal P. Murtagh; Ian C. McDade; Patrick Eriksson; Edward J. Llewellyn; A. Bazureau; Florence Goutail
Scientific studies of the major environmental questions of global warming and ozone depletion require global data sets of atmospheric constituents with relevant temporal and spatial resolution. In this paper global number density profiles of O3 and NO2 are retrieved from Odin/OSIRIS limb-scattered sunlight measurements, using the Maximum A Posteriori estimator. Differential Optical Absorption Spectroscopy is applied to OSIRIS radiances as an intermediate step, using the wavelength windows 571-617 nm for O3 and 435-451 nm for NO2. The method is computationally efficient for processing OSIRIS data on an operational basis. Results show that a 2-3 km height resolution is generally achievable between about 12 km and 45 km for O3 with an estimated accuracy of 13\% at the peak and between about 15 km and 40 km for NO2 with an estimated accuracy of 10\% at the peak. First validations of the retrieved data indicate a good agreement both with other retrieval techniques applied to OSIRIS measurements and with the results of other instruments. Once the validation has reached a confident level, the retrieved data will be used to study important stratospheric processes relevant to global environmental problems. The unique NO2 data set will be of particular interest for studies of nitrogen chemistry in the middle atmosphere.
Geophysical Research Letters | 2005
Hitoshi Irie; Kengo Sudo; Hajime Akimoto; Andreas Richter; J. P. Burrows; Thomas Wagner; Mark Wenig; Steffen Beirle; Y. Kondo; V.P. Sinyakov; Florence Goutail
Long-term tropospheric nitrogen dioxide (NO2) column data obtained by the Global Ozone Monitoring Experiment (GOME) (G-NO2) are evaluated to confirm the trends found in tropospheric NO2 abundances over East Asia between 1996 and 2002. For three locations in Central and East Asia, the G-NO2 values are compared with tropospheric columns estimated from coincident observations of total NO2 by ground-based UV/visible spectrometers and stratospheric NO2 by satellite solar occultation sensors (E-NO2). The comparisons show a slight linear drift in G-NO2 data from 1996 to 2002. However, it is much smaller than the standard deviation of the differences between G-NO2 and E-NO2 and much smaller than the increasing trends in NO2 seen by GOME over the industrial areas of China, demonstrating the validity of the trends estimated using the GOME data.
Journal of Geophysical Research | 2006
Christopher E. Sioris; L. J. Kovalenko; Christopher Anthony McLinden; R. J. Salawitch; M. Van Roozendael; Florence Goutail; M. Dorf; K. Pfeilsticker; Kelly Chance; C. von Savigny; X. Liu; Thomas P. Kurosu; Jean-Pierre Pommereau; H. Bösch; J. Frerick
[1] Vertical profiles of stratospheric bromine monoxide (BrO) in the 15–30 km range are retrieved from SCIAMACHY limb scatter data over the globe. First validation comparisons with the balloon-borne SAOZ-BrO and LPMA/DOAS instruments indicate retrieval biases of � 20% or less. Propagated spectral fitting uncertainties lead to a precision approaching � 25% on a 2 km grid at 25 km. This worsens at higher altitudes because of reduced signal and at lower altitudes because of the reduced penetrability of the atmosphere. In terms of volume mixing ratio (VMR), the single profile precision increases from � 4 pptv at 17 km to � 8 pptv at 27 km. Repeatability, an alternative indicator of precision, is 2–3 pptv for SCIAMACHY retrievals and independent of altitude. The BrO stratospheric number density peak generally lies 5 ± 2 km above the tropopause. In the tropics, the stratospheric BrO VMR generally increases with increasing altitude. The observed stratospheric BrO global distribution is generally consistent with previous balloon measurements but does not agree well with results of a model that uses Bry inferred only from the observed breakdown of long-lived bromoalkanes (i.e., methyl bromide and halons). We find best agreement with the observed vertical and latitudinal distribution of BrO for model results that include an 8.4 ± 2 pptv contribution to stratospheric Bry, most of which is expected from the breakdown of VSL (very short lived) bromocarbons, in addition to the � 16 pptv contribution from longer-lived sources. This suggests that stratospheric Bry exceeds 20 pptv. Profiles of Bry profiles derived from the balloon measurements of BrO also suggest Bry is in excess of 20 pptv, but the uncertainty and variability of these results do not allow us to definitively rule out this concentration. We find typical BrO VMRs of � 4 pptv at 15 km in the tropical tropopause layer, suggesting that a significant portion of the bromine from VSL bromoalkane sources may be carried across the tropopause in the form of inorganic decomposition products. We discuss a variety of VSL bromocarbons species that may be contributing to the elevated concentrations of stratospheric BrO.
Journal of the Atmospheric Sciences | 1999
J.-C. Lambert; Michel Van Roozendael; Martine De Mazière; Paul C. Simon; Jean-Pierre Pommereau; Florence Goutail; Alain Sarkissian; James F. Gleason
Abstract Spaceborne atmospheric chemistry sensors provide unique access to the distribution and variation of the concentration of many trace species on the global scale. However, since the measurements and the retrieval algorithms are sensitive to a variety of instrumental as well as atmospheric sources of error, they need to be validated carefully by correlative measurements. The quality control and validation of satellite measurements on the global scale, as well as in the long term, is one of the goals of the Network for the Detection of Stratospheric Change (NDSC). Started in 1991, at the present time the NDSC includes five primary and two dozen complementary stations distributed from the Arctic to the Antarctic, comprising a variety of instruments such as UV–visible spectrometers, Fourier transform infrared spectrometers, lidars, and millimeter-wave radiometers. After an overview of the main sources of uncertainty which could perturb the measurements from space, and of the ground-based data provided ...
Journal of Atmospheric Chemistry | 1999
Howard K. Roscoe; P.V. Johnston; M. Van Roozendael; Andreas Richter; Alain Sarkissian; J. Roscoe; K. E. Preston; J-C. Lambert; C. Hermans; W. DeCuyper; S. Dzienus; T. Winterrath; J. P. Burrows; Florence Goutail; J.-P. Pommereau; E. D'Almeida; J. Hottier; C. Coureul; R. Didier; I. Pundt; L. M. Bartlett; C. T. McElroy; J. E. Kerr; Alexander Elokhov; Giorgio Giovanelli; F. Ravegnani; M. Premuda; I. Kostadinov; Thomas Wagner; K. Pfeilsticker
In June 1996, 16 UV-visible sensors from 11 institutes measured spectra of the zenith sky for more than 10 days. Spectra were analysed in real-time to determine slant column amounts of O3 and NO2. Spectra of Hg lamps and lasers were measured, and the amount of NO2 in a cell was determined by each spectrometer. Some spectra were re-analysed after obvious errors were found. Slant columns were compared in two ways: by examining regression analyses against comparison instruments over the whole range of solar zenith angles; and by taking fractional differences from a comparison instrument at solar zenith angles between 85° and 91°. Regression identified which pairs of instruments were most consistent, and so which could be used as universal comparison instruments. For O3, regression slopes for the whole campaign agreed within 5% for most instruments despite the use of different cross-sections and wavelength intervals, whereas similar agreement was only achieved for NO2 when the same cross-sections and wavelength intervals were used and only one half-days data was analysed. Mean fractional differences in NO2 from a comparison instrument fall within ±7% (1-sigma) for most instruments, with standard deviations of the mean differences averaging 4.5%. Mean differences in O3 fall within ±2.5% (1- sigma) for most instruments, with standard deviations of the mean differences averaging 2%. Measurements of NO2 in the cell had similar agreement to measurements of NO2 in the atmosphere, but for some instruments measurements with cell and atmosphere relative to a comparison instrument disagreed by more than the error bars.
Journal of Atmospheric Chemistry | 1998
M. Van Roozendael; P. Peeters; Howard K. Roscoe; H. De Backer; Anna E. Jones; L. M. Bartlett; G. Vaughan; Florence Goutail; J.-P. Pommereau; E. Kyrö; C. Wahlstrom; G. O. Braathen; Paul C. Simon
Comparisons of total column ozone measurements from Dobson, Brewer and SAOZ instruments are presented for the period 1990 to 1995 at seven stations covering the mid- and the high northern latitudes, as well as the Antarctic region. The main purpose of these comparisons is to assess, by reference to the well established Dobson network, the accuracy of the zenith-sky visible spectroscopy for the measurement of total ozone. The strengths and present limitations of this latter technique are investigated. As a general result, the different instruments are found to agree within a few percent at all stations, the best agreement being obtained at mid-latitudes. On average, for the mid-latitudes, SAOZ O3 measurements are approximately 2% higher than Dobson ones, with a scatter of about 5%. At higher latitudes, both scatter and systematic deviation tend to increase. In all cases, the relative differences between SAOZ and Dobson or Brewer column ozone are characterised by a significant seasonal signal, the amplitude of which increases from about 2.5% at mid-latitude to a maximum of 7.5% at Faraday, Antarctica. Although it introduces a significant contribution to the seasonality at high latitude, the temperature sensitivity of the O3 absorption coefficients of the Dobson and Brewer instruments is shown to be too small to account for the observed SAOZ/Dobson differences. Except for Faraday, these differences can however be largely reduced if SAOZ AMFs are calculated with realistic climatological profiles of ozone, pressure and temperature. Other sources of uncertainties that might affect the comparison are investigated. Evidence is found that the differences in the air masses sampled by the SAOZ and the other instruments contribute significantly to the scatter, and the impact of the tropospheric clouds on SAOZ measurements is displayed.