Florence Levillayer
Pasteur Institute
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Florence Levillayer.
Cancer Cell | 2008
Stefano Cairo; Carolina Armengol; Aurélien de Reyniès; Yu Wei; Emilie Thomas; Claire-Angélique Renard; Andrei Goga; Asha Balakrishnan; Michaela Semeraro; Lionel Gresh; Marco Pontoglio; Helene Strick-Marchand; Florence Levillayer; Yann Nouët; David S. Rickman; Frédéric Gauthier; Sophie Branchereau; Laurence Brugières; Veronique Laithier; Raymonde Bouvier; Françoise Boman; Giuseppe Basso; Jean-François Michiels; Paul Hofman; Francine Arbez-Gindre; Hélène Jouan; Marie-Christine Rousselet-Chapeau; Dominique Berrebi; Luc Marcellin; François Plenat
Hepatoblastoma, the most common pediatric liver cancer, is tightly linked to excessive Wnt/beta-catenin signaling. Here, we used microarray analysis to identify two tumor subclasses resembling distinct phases of liver development and a discriminating 16-gene signature. beta-catenin activated different transcriptional programs in the two tumor types, with distinctive expression of hepatic stem/progenitor markers in immature tumors. This highly proliferating subclass was typified by gains of chromosomes 8q and 2p and upregulated Myc signaling. Myc-induced hepatoblastoma-like tumors in mice strikingly resembled the human immature subtype, and Myc downregulation in hepatoblastoma cells impaired tumorigenesis in vivo. Remarkably, the 16-gene signature discriminated invasive and metastatic hepatoblastomas and predicted prognosis with high accuracy.
Journal of Virology | 2013
Sarah Dion; Maryline Bourgine; Ophélie Godon; Florence Levillayer; Marie-Louise Michel
ABSTRACT Hepatitis B virus (HBV) persistence may be due to impaired HBV-specific immune responses being unable to eliminate efficiently or cure infected hepatocytes. The immune mechanisms that lead to HBV persistence have not been completely identified, and no appropriate animal model is available for such studies. Therefore, we established a chronic HBV infection model in a mouse strain with human leukocyte antigen A2/DR1 (HLA-A2/DR1) transgenes and an H-2 class I/class II knockout. The liver of these mice was transduced with adeno-associated virus serotype 2/8 (AAV2/8) carrying a replication-competent HBV DNA genome. In all AAV2/8-transduced mice, hepatitis B virus surface antigen, hepatitis B virus e antigen, and HBV DNA persisted in serum for at least 1 year. Viral replication intermediates and transcripts were detected in the livers of the AAV-injected mice. The hepatitis B core antigen was expressed in 60% of hepatocytes. No significant inflammation was observed in the liver. This was linked to a higher number of regulatory T cells in liver than in controls and a defect in HBV-specific functional T-cell responses. Despite the substantial tolerance resulting from expression of HBV antigens in hepatocytes, we succeeded in priming functional HBV-specific T-cell responses in peripheral tissues, which subsequently reached the liver. This AAV2/8-HBV-transduced HLA-A2/DR1 murine model recapitulates virological and immunological characteristics of chronic HBV infection, and it could be useful for the development of new treatments and immune-based therapies or therapeutic vaccines for chronic HBV infections.
Journal of Neuroimmunology | 2000
J. Reboul; C. Mertens; Florence Levillayer; Sophie Eichenbaum‐Voline; Thomas Vilkoren; I. Cournu; Marie-Claude Babron; Olivier Lyon-Caen; Françoise Clerget-Darpoux; Gilles Edan; Michel Clanet; Michel Brahic; Jean-François Bureau; Bertrand Fontaine; Roland S. Liblau
The immune system is involved in the pathophysiology of multiple sclerosis (MS) but the initiating antigen(s) is not yet identified. Since cytokines control both the intensity and the quality of the immune response they may be relevant candidates for the genetic susceptibility to MS. To analyze the contribution of type 1 and type 2 cytokine and cytokine receptor genes in the genetic susceptibility to MS, we have examined, in 116 French MS sibpairs, whether there is significant linkage between MS and 15 cytokine or cytokine receptor genes using 31 highly polymorphic genetic markers. The data were analyzed using the maximum likelihood score and the transmission disequilibrium approaches. None of the candidate genes tested was significantly linked to MS on the whole population. However, after stratification of the analysis on the basis of sharing (or not) of the HLA-DRB1*1501 allele, indication of linkage was found for the IL2-RB gene. These findings suggest that the IL2-RB locus contributes to the genetic susceptibility in a subgroup of MS patients.
Science Signaling | 2012
Delphine Cougot; Eric Allemand; Lise Rivière; Shirine Benhenda; Karine Duroure; Florence Levillayer; Christian Muchardt; Marie-Annick Buendia; Christine Neuveut
A virus prolongs the activity of a host transcription factor to promote expression of viral genes. Inhibiting Dephosphorylation for Viral DNA Transcription The transcription factor CREB [cyclic adenosine monophosphate (cAMP) response element–binding protein] is phosphorylated and activated downstream of cAMP production, whereas it is dephosphorylated and inactivated by protein phosphatase 1 (PP1). Cougot et al. previously showed that HBx, a protein produced by hepatitis B virus (HBV), increases the transcription of CREB target genes. Here, the authors show that HBV co-opts CREB in the transcription of its own DNA. Phosphorylation of CREB (and thus activity) recruited on HBV DNA was prolonged, an effect that was mediated by inhibition of PP1 activity by HBx. Because persistent liver infection with HBV is a risk factor for developing hepatocellular carcinoma, these results suggest that targeting HBx could be a way to attenuate HBV infection and reduce the risk of viral-induced cancer. The regulatory protein HBx is essential for hepatitis B virus (HBV) replication in vivo and for transcription of the episomal HBV genome. We previously reported that in infected cells HBx activates genes targeted by the transcription factor CREB [cyclic adenosine monophosphate (cAMP) response element–binding protein]. cAMP induces phosphorylation and activation of CREB, and CREB inactivation is promoted by protein phosphatase 1 (PP1), which binds to CREB through histone deacetylase 1 (HDAC1). We showed that CREB was recruited to HBV DNA. Phosphorylation induced by cAMP had a longer half-life when CREB was bound to the episomal HBV genome compared to when it was bound to the promoter of a host target gene not regulated by HBx, suggesting that the virus has developed a mechanism to favor its own transcription. This mechanism required HBx, which interacted with and inhibited PP1 to extend the half-life of CREB phosphorylation. Silencing of PP1 rescued replication of an HBx-deficient HBV genome, suggesting that HBx enhances viral transcription in part by neutralizing PP1 activity. Our results illustrate a previously unknown mechanism of HBV transcriptional activation by HBx in which HBx interferes with the inactivation of CREB by the PP1 and HDAC1 complex.
Journal of Biological Chemistry | 2008
Charlotte Labalette; Yann Nouët; Joëlle Sobczak-Thépot; Carolina Armengol; Florence Levillayer; Marie-Claude Gendron; Claire-Angélique Renard; Béatrice Regnault; Ju Chen; Marie-Annick Buendia; Yu Wei
The LIM-only protein FHL2 acts as a transcriptional modulator that positively or negatively regulates multiple signaling pathways. We recently reported that FHL2 cooperates with CREB-binding protein/p300 in the activation of β-catenin/T cell factor target gene cyclin D1. In this paper, we demonstrate that FHL2 is associated with the cyclin D1 promoter at the T cell factor/CRE site, providing evidence that cyclin D1 is a direct target of FHL2. We show that deficiency of FHL2 greatly reduces the proliferative capacity of spontaneously immortalized mouse fibroblasts, which is associated with decreased expression of cyclin D1 and p16INK4a, and hypophosphorylation of Rb. Reexpression of FHL2 in FHL2-null fibroblasts efficiently restores cyclin D1 levels and cell proliferative capacity, indicating that FHL2 is critical for cyclin D1 activation and cell growth. Moreover, ectopic cyclin D1 expression is sufficient to override growth inhibition of immortalized FHL2-null fibroblasts. Gene expression profiling revealed that FHL2 deficiency triggers a broad change of the cell cycle program that is associated with down-regulation of several G1/S and G2/M cyclins, E2F transcription factors, and DNA replication machinery, thus correlating with reduced cell proliferation. This change also involves down-regulation of the negative cell cycle regulators, particularly INK4 inhibitors, which could counteract the decreased expression of cyclins, allowing cells to grow. Our study illustrates that FHL2 can act on different aspects of the cell cycle program to finely regulate cell proliferation.
Genetics | 2007
Florence Levillayer; Magali Mas; Fabienne Levi-Acobas; Michel Brahic; Jean-François Bureau
After intracerebral inoculation, Theilers virus induces in its natural host, the mouse, an acute encephalomyelitis followed, in susceptible animals, by chronic inflammation and primary demyelination. Susceptibility to demyelination among strains of laboratory mice is explained by the capacity of the immune system to control viral load during persistence. Also, differences of susceptibility to viral load between the susceptible SJL strain and the resistant B10.S strain are mainly due to two loci, Tmevp2 and Tmevp3, located close to the Ifng locus on chromosome 10. In this article, we show that the Tmevp3 locus controls both mortality during the acute encephalomyelitis and viral load during persistence. Most probably, two genes located in the Tmevp3 interval control these two different phenotypes with efficiencies that depend on the age of the mouse at inoculation. Il22, a member of the IL-10 cytokine family, is a candidate gene for the control of mortality during the acute encephalomyelitis.
Molecular and Cellular Biology | 2013
Jennifer Dahan; Yann Nouët; Grégory Jouvion; Florence Levillayer; Anne-Marie Cassard-Doulcier; Ali Tebbi; Fany Blanc; Lauriane Remy; Ju Chen; Stefano Cairo; Catherine Werts; Mustapha Si-Tahar; Thierry Tordjmann; Marie-Annick Buendia; Yu Wei
ABSTRACT Four-and-a-half LIM-only protein 2 (FHL2) is an important mediator in many signaling pathways. In this study, we analyzed the functions of FHL2 in nuclear factor κB (NF-κB) signaling in the liver. We show that FHL2 enhanced tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) activity in transcriptional activation of NF-κB targets by stabilizing the protein. TRAF6 is a binding partner of FHL2 and an important component of the Toll-like receptor–NF-κB pathway. Knockdown of FHL2 in 293-hTLR4/MD2-CD14 cells impaired lipopolysaccharide (LPS)-induced NF-κB activity, which regulates expression of inflammatory cytokines. Indeed, FHL2−/− macrophages showed significantly reduced production of TNF and interleukin 6 (IL-6) following LPS stimulation. TNF and IL-6 are the key cytokines that prime liver regeneration after hepatic injury. Following partial hepatectomy, FHL2−/− mice exhibited diminished induction of TNF and IL-6 and delayed hepatocyte regeneration. In the liver, NF-κB signaling orchestrates inflammatory cross talk between hepatocytes and hepatic immune cells that promote chemical hepatocarcinogenesis. We found that deficiency of FHL2 reduced susceptibility to diethylnitrosamine-induced hepatocarcinogenesis, correlating with the activator function of FHL2 in NF-κB signaling. Our findings demonstrate FHL2 as a positive regulator of NF-κB activity in liver regeneration and carcinogenesis and highlight the importance of FHL2 in both hepatocytes and hepatic immune cells.
Journal of Biological Chemistry | 2013
Tian Xia; Laurence Levy; Florence Levillayer; Baosen Jia; Gaiyun Li; Christine Neuveut; Marie-Annick Buendia; Ke Lan; Yu Wei
Background: FHL2 is involved in regulation of the TGF-β signaling pathway. Results: FHL2 increases the stability of the TGF-β pathway positive regulator Arkadia by inhibiting its ubiquitination and cooperates with Arkadia to activate TGF-β signaling. Conclusion: FHL2 is an important regulator for Arkadia ubiquitination. Significance: This provides novel insight into the mechanisms for the regulation of the TGF-β pathway. Arkadia is a RING-based ubiquitin ligase that positively regulates TGF-β signaling by targeting several pathway components for ubiquitination and degradation. However, little is known about the mechanisms controlling Arkadia activity. Here we show that the LIM-only protein FHL2 binds and synergistically cooperates with Arkadia to activate Smad3/Smad4-dependent transcription. Knockdown of FHL2 by RNA interference decreases Arkadia level and restricts the amplitude of Arkadia-induced TGF-β target gene responses. We found that Arkadia is ubiquitinated via K63- and K27-linked polyubiquitination. A single mutation at the RING domain that abolishes the E3 activity diminishes Arkadia ubiquitination, indicating that this modification partly involves autocatalytic process. Mutation of seven lysines at the C-terminal region of Arkadia severely impairs ubiquitination through the K27 but not the K63 linkage and slows down the turnover of Arkadia, suggesting that K27-linked polyubiquitination might promote proteolysis-dependent regulation of Arkadia. We show that FHL2 increases the half-life of Arkadia through inhibition of ubiquitin chain assembly on the protein, which provides a molecular basis for functional cooperation between Arkadia and FHL2 in enhancing TGF-β signaling. Our study uncovers a novel regulatory mechanism of Arkadia by ubiquitination and identifies FHL2 as important regulator of Arkadia ubiquitination and TGF-β signal transduction.
Journal of Hepatology | 2012
Yann Nouët; Jennifer Dahan; Charlotte Labalette; Florence Levillayer; B. Julien; Grégory Jouvion; Stefano Cairo; Francina Langa Vives; Agnès Ribeiro; Michel Huerre; Sabine Colnot; Christine Perret; Jeanne Tran Van Nhieu; Thierry Tordjmann; Marie-Annick Buendia; Yu Wei
BACKGROUND & AIMS The four and a half LIM-only protein 2 (FHL2) is upregulated in diverse pathological conditions. Here, we analyzed the effects of FHL2 overexpression in the liver of FHL2 transgenic mice (Apo-FHL2). METHODS We first examined cell proliferation and apoptosis in Apo-FHL2 livers and performed partial hepatectomy to investigate high FHL2 expression in liver regeneration. Expression of FHL2 was then analyzed by real time PCR in human hepatocellular carcinoma and adjacent non-tumorous livers. Finally, the role of FHL2 in hepatocarcinogenesis was assessed using Apo-FHL2;Apc(lox/lox) mice. RESULTS Six-fold increase in cell proliferation in transgenic livers was associated with concomitant apoptosis, resulting in normal liver mass. In Apo-FHL2 livers, both cyclin D1 and p53 were markedly increased. Evidence supporting a p53-dependent cell death mechanism was provided by the findings that FHL2 bound to and activated the p53 promoter, and that a dominant negative p53 mutant compromised FHL2-induced apoptosis in hepatic cells. Following partial hepatectomy in Apo-FHL2 mice, hepatocytes displayed advanced G1 phase entry and DNA synthesis leading to accelerated liver weight restoration. Interestingly, FHL2 upregulation in human liver specimens showed significant association with increasing inflammation score and cirrhosis. Finally, while Apo-FHL2 mice developed no tumors, the FHL2 transgene enhanced hepatocarcinogenesis induced by liver-specific deletion of the adenomatous polyposis coli gene and aberrant Wnt/β-catenin signaling in Apc(lox/lox) animals. CONCLUSIONS Our results implicate FHL2 in the regulation of signaling pathways that couple proliferation and cell death machineries, and underscore the important role of FHL2 in liver homeostasis and carcinogenesis.
PLOS ONE | 2010
Charlotte Labalette; Yann Nouët; Florence Levillayer; Sabine Colnot; Ju Chen; Valere Claude; Michel Huerre; Christine Perret; Marie-Annick Buendia; Yu Wei
Background The four and a half LIM-only protein 2 (FHL2) is capable of shuttling between focal adhesion and nucleus where it signals through direct interaction with a number of proteins including β-catenin. Although FHL2 activation has been found in various human cancers, evidence of its functional contribution to carcinogenesis has been lacking. Methodology/Principal Findings Here we have investigated the role of FHL2 in intestinal tumorigenesis in which activation of the Wnt pathway by mutations in the adenomatous polyposis coli gene (Apc) or in β-catenin constitutes the primary transforming event. In this murine model, introduction of a biallelic deletion of FHL2 into mutant ApcΔ14/+ mice substantially reduces the number of intestinal adenomas but not tumor growth, suggesting a role of FHL2 in the initial steps of tumorigenesis. In the lesions, Wnt signalling is not affected by FHL2 deficiency, remaining constitutively active. Nevertheless, loss of FHL2 activity is associated with increased epithelial cell migration in intestinal epithelium, which might allow to eliminate more efficiently deleterious cells and reduce the risk of tumorigenesis. This finding may provide a mechanistic basis for tumor suppression by FHL2 deficiency. In human colorectal carcinoma but not in low-grade dysplasia, we detected up-regulation and enhanced nuclear localization of FHL2, indicating the activation of FHL2 during the development of malignancy. Conclusions/Significance Our data demonstrate that FHL2 represents a critical factor in intestinal tumorigenesis.