Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Florence M. Hofman is active.

Publication


Featured researches published by Florence M. Hofman.


Nature Medicine | 2003

RAGE mediates amyloid-beta peptide transport across the blood-brain barrier and accumulation in brain.

Rashid Deane; Shi Du Yan; Ram Kumar Submamaryan; Barbara LaRue; Suzana Jovanovic; Elizabeth Hogg; Deborah Welch; Lawrence Manness; Chang Lin; Jin Yu; Hong Zhu; Jorge Ghiso; Blas Frangione; Alan Stern; Ann Marie Schmidt; Don L. Armstrong; Bernd Arnold; Birgit Liliensiek; Peter P. Nawroth; Florence M. Hofman; Mark S. Kindy; David M. Stern; Berislav V. Zlokovic

Amyloid-β peptide (Aβ) interacts with the vasculature to influence Aβ levels in the brain and cerebral blood flow, providing a means of amplifying the Aβ-induced cellular stress underlying neuronal dysfunction and dementia. Systemic Aβ infusion and studies in genetically manipulated mice show that Aβ interaction with receptor for advanced glycation end products (RAGE)-bearing cells in the vessel wall results in transport of Aβ across the blood-brain barrier (BBB) and expression of proinflammatory cytokines and endothelin-1 (ET-1), the latter mediating Aβ-induced vasoconstriction. Inhibition of RAGE-ligand interaction suppresses accumulation of Aβ in brain parenchyma in a mouse transgenic model. These findings suggest that vascular RAGE is a target for inhibiting pathogenic consequences of Aβ-vascular interactions, including development of cerebral amyloidosis.


Cancer Research | 2007

The Unfolded Protein Response Regulator GRP78/BiP as a Novel Target for Increasing Chemosensitivity in Malignant Gliomas

Peter Pyrko; Axel H. Schönthal; Florence M. Hofman; Thomas C. Chen; Amy S. Lee

Poor chemosensitivity and the development of chemoresistance remain major obstacles to successful chemotherapy of malignant gliomas. GRP78 is a key regulator of the unfolded protein response (UPR). As a Ca2+-binding molecular chaperone in the endoplasmic reticulum (ER), GRP78 maintains ER homeostasis, suppresses stress-induced apoptosis, and controls UPR signaling. We report here that GRP78 is expressed at low levels in normal adult brain, but is significantly elevated in malignant glioma specimens and human malignant glioma cell lines, correlating with their rate of proliferation. Down-regulation of GRP78 by small interfering RNA leads to a slowdown in glioma cell growth. Our studies further reveal that temozolomide, the chemotherapeutic agent of choice for treatment of malignant gliomas, leads to induction of CHOP, a major proapoptotic arm of the UPR. Knockdown of GRP78 in glioblastoma cell lines induces CHOP and activates caspase-7 in temozolomide-treated cells. Colony survival assays further establish that knockdown of GRP78 lowers resistance of glioma cells to temozolomide, and, conversely, overexpression of GRP78 confers higher resistance. Knockdown of GRP78 also sensitizes glioma cells to 5-fluorouracil and CPT-11. Treatment of glioma cells with (-)-epigallocatechin gallate, which targets the ATP-binding domain of GRP78 and blocks its protective function, sensitizes glioma cells to temozolomide. These results identify a novel chemoresistance mechanism in malignant gliomas and show that combination of drugs capable of suppressing GRP78 with conventional agents such as temozolomide might represent a novel approach to eliminate residual tumor cells after surgery and increase the effectiveness of malignant glioma chemotherapy.


Cancer Research | 2008

Critical Role of the Stress Chaperone GRP78/BiP in Tumor Proliferation, Survival, and Tumor Angiogenesis in Transgene-Induced Mammary Tumor Development

Dezheng Dong; Min Ni; Jianze Li; Shigang Xiong; Wei Ye; Jenilyn J. Virrey; Changhui Mao; Risheng Ye; Miao Wang; Ligaya Pen; Louis Dubeau; Susan Groshen; Florence M. Hofman; Amy S. Lee

The unfolded protein response (UPR) is an evolutionarily conserved mechanism that activates both proapoptotic and survival pathways to allow eukaryotic cells to adapt to endoplasmic reticulum (ER) stress. Although the UPR has been implicated in tumorigenesis, its precise role in endogenous cancer remains unclear. A major UPR protective response is the induction of the ER chaperone GRP78/BiP, which is expressed at high levels in a variety of tumors and confers drug resistance in both proliferating and dormant cancer cells. To determine the physiologic role of GRP78 in in situ-generated tumor and the consequence of its suppression on normal organs, we used a genetic model of breast cancer in the Grp78 heterozygous mice where GRP78 expression level was reduced by about half, mimicking anti-GRP78 agents that achieve partial suppression of GRP78 expression. Here, we report that Grp78 heterozygosity has no effect on organ development or antibody production but prolongs the latency period and significantly impedes tumor growth. Our results reveal three major mechanisms mediated by GRP78 for cancer progression: enhancement of tumor cell proliferation, protection against apoptosis, and promotion of tumor angiogenesis. Importantly, although partial reduction of GRP78 in the Grp78 heterozygous mice substantially reduces the tumor microvessel density, it has no effect on vasculature of normal organs. Our findings establish that a key UPR target GRP78 is preferably required for pathophysiologic conditions, such as tumor proliferation, survival, and angiogenesis, underscoring its potential value as a novel therapeutic target for dual antitumor and antiangiogenesis activity.


Nature | 2015

Nanoparticle biointerfacing by platelet membrane cloaking

Che-Ming J. Hu; Ronnie H. Fang; Kuei-Chun Wang; Brian T. Luk; Soracha Thamphiwatana; Diana Dehaini; Phu Nguyen; Pavimol Angsantikul; Cindy Wen; Ashley V. Kroll; Cody W. Carpenter; Manikantan Ramesh; Vivian Qu; Sherrina Patel; Jie Zhu; William Shi; Florence M. Hofman; Thomas C. Chen; Weiwei Gao; Kang Zhang; Shu Chien; Liangfang Zhang

Development of functional nanoparticles can be encumbered by unanticipated material properties and biological events, which can affect nanoparticle effectiveness in complex, physiologically relevant systems. Despite the advances in bottom-up nanoengineering and surface chemistry, reductionist functionalization approaches remain inadequate in replicating the complex interfaces present in nature and cannot avoid exposure of foreign materials. Here we report on the preparation of polymeric nanoparticles enclosed in the plasma membrane of human platelets, which are a unique population of cellular fragments that adhere to a variety of disease-relevant substrates. The resulting nanoparticles possess a right-side-out unilamellar membrane coating functionalized with immunomodulatory and adhesion antigens associated with platelets. Compared to uncoated particles, the platelet membrane-cloaked nanoparticles have reduced cellular uptake by macrophage-like cells and lack particle-induced complement activation in autologous human plasma. The cloaked nanoparticles also display platelet-mimicking properties such as selective adhesion to damaged human and rodent vasculatures as well as enhanced binding to platelet-adhering pathogens. In an experimental rat model of coronary restenosis and a mouse model of systemic bacterial infection, docetaxel and vancomycin, respectively, show enhanced therapeutic efficacy when delivered by the platelet-mimetic nanoparticles. The multifaceted biointerfacing enabled by the platelet membrane cloaking method provides a new approach in developing functional nanoparticles for disease-targeted delivery.


Nature Medicine | 2005

Role of the MEOX2 homeobox gene in neurovascular dysfunction in Alzheimer disease.

Zhenhua Wu; Huang Guo; Nienwen Chow; Jan Sallstrom; Robert D. Bell; Rashid Deane; Andrew I. Brooks; Suhasini Kanagala; Anna Rubio; Abhay P. Sagare; Dong Liu; Fang Li; Don L. Armstrong; Thomas A. Gasiewicz; Raphael Zidovetzki; Xiaomei Song; Florence M. Hofman; Berislav V. Zlokovic

Neurovascular dysfunction substantially contributes to Alzheimer disease. Here, we show that transcriptional profiling of human brain endothelial cells (BECs) defines a subset of genes whose expression is age-independent but is considerably altered in Alzheimer disease, including the homeobox gene MEOX2 (also known as GAX), a regulator of vascular differentiation, whose expression is low in Alzheimer disease. By using viral-mediated MEOX2 gene silencing and transfer, we show that restoring expression of the protein it encodes, GAX, in BECs from individuals with Alzheimer disease stimulates angiogenesis, transcriptionally suppresses AFX1 forkhead transcription factor–mediated apoptosis and increases the levels of a major amyloid-β peptide (Aβ) clearance receptor, the low-density lipoprotein receptor–related protein 1 (LRP), at the blood-brain barrier. In mice, deletion of Meox2 (also known as Gax) results in reductions in brain capillary density and resting cerebral blood flow, loss of the angiogenic response to hypoxia in the brain and an impaired Aβ efflux from brain caused by reduced LRP levels. The link of MEOX2 to neurovascular dysfunction in Alzheimer disease provides new mechanistic and therapeutic insights into this illness.


Circulation | 2001

Anti-Inflammatory, Antithrombotic, and Neuroprotective Effects of Activated Protein C in a Murine Model of Focal Ischemic Stroke

Masayoshi Shibata; S. Ram Kumar; Arun Paul Amar; José A. Fernández; Florence M. Hofman; Berislav V. Zlokovic

BackgroundActivated protein C (APC) contributes to systemic anticoagulant and anti-inflammatory activities. APC may reduce organ damage by inhibiting thrombin generation and leukocyte activation. Neutrophils and cerebrovascular thrombosis contribute to ischemic neuronal injury, suggesting that APC may be a potential protective agent for stroke. Methods and ResultsWe examined the effects of APC in a murine model of focal ischemia. After middle cerebral artery occlusion/reperfusion, the average survival time in controls was 13.6 hours. Animals that received purified human plasma–derived APC 2 mg/kg IV either 15 minutes before or 10 minutes after stroke induction survived 24 hours and were killed for neuropathological analysis. APC 2 mg/kg given before or after onset of ischemia restored cerebral blood flow, reduced brain infarct volume (59% to 69%;P <0.003) and brain edema (50% to 61%;P <0.05), eliminated brain infiltration with neutrophils, and reduced the number of fibrin-positive cerebral vessels by 57% (P <0.05) and 25% (nonsignificant), respectively. The neuroprotective effect of APC was dose-dependent and associated with significant inhibition of ICAM-1 expression on ischemic cerebral blood vessels (eg, 61% inhibition with 2 mg/kg APC). Intracerebral bleeding was not observed with APC. ConclusionsAPC exerts anti-inflammatory, antithrombotic, and neuroprotective effects in stroke. Central effects of APC are likely to be related to improved maintenance of the blood-brain barrier to neutrophils and to reduced microvascular obstructions and fibrin deposition.


Journal of Cerebral Blood Flow and Metabolism | 1998

Circulating Antibody Against Tumor Necrosis Factor-Alpha Protects Rat Brain from Reperfusion Injury

Sean D. Lavine; Florence M. Hofman; Berislav V. Zlokovic

The role of tumor necrosis factor-alpha (TNF-α) in brain injury is controversial. We studied the effect of anti–TNF-α antibody in a rat model of reversible middle cerebral artery occlusion. During focal ischemia and early reperfusion, TNF-α was rapidly and transiently released into circulation. Pretreatment with intravenous anti–TNF-α antibody reduced cortical (71%, P < 0.015) and subcortical (58%, P < 0.007) injury, enhanced the cerebral blood flow during reperfusion, and improved the neurologic outcome. This further supports the contention that TNF-α is a deleterious cytokine in stroke, whereas circulating antibody against TNF-α may protect brain from reperfusion injury.


Journal of Virology | 2007

Both Virus and Tumor Necrosis Factor Alpha Are Critical for Endothelium Damage in a Mouse Model of Dengue Virus-Induced Hemorrhage

Hsuen-Chin Chen; Florence M. Hofman; John T. Kung; Yang-Ding Lin; Betty A. Wu-Hsieh

ABSTRACT Hemorrhage is a common clinical manifestation in dengue patients. However, the pathogenic mechanism of dengue virus (DV)-induced hemorrhage awaits clarification. We established a mouse model of DV hemorrhage using immunocompetent C57BL/6 mice by injecting DV serotype 2 strain 16681 intradermally. While inoculation of 3 × 109 PFU of DV induced systemic hemorrhage in all of the mice by day 3 of infection, one out of three of those injected with 4 × 107 to 8 × 107 PFU developed hemorrhage in the subcutaneous tissues. The mice that were inoculated with 4 × 107 to 8 × 107 PFU but that did not develop hemorrhage were used as a basis for comparison to explore the pathogenic mechanism of dengue hemorrhage. The results showed that mice with severe thrombocytopenia manifested signs of vascular leakage and hemorrhage. We observed that high viral titer, macrophage infiltration, and tumor necrosis factor alpha (TNF-α) production in the local tissues are three important events that lead to hemorrhage. Immunofluorescence staining revealed that DV targeted both endothelial cells and macrophages. In addition, the production of high levels of TNF-α in tissues correlated with endothelial cell apoptosis and hemorrhage. By comparing TNF-α−/− to IgH−/−, C5−/−, and wild-type mice, we found that TNF-α was important for the development of hemorrhage. In vitro studies showed that mouse primary microvascular endothelial cells were susceptible to DV but that TNF-α enhanced DV-induced apoptosis. Our mouse model illustrated that intradermal inoculation of high titers of DV predisposes endothelial cells to be susceptible to TNF-α-induced cell death, which leads to endothelium damage and hemorrhage development. This finding highlights the contribution of the innate immune response to dengue hemorrhage.


The American Journal of Medicine | 1985

Primary central nervous system lymphoma in homosexual men. Clinical, immunologic, and pathologic features☆

Parkash S. Gill; Alexandra M. Levine; Paul R. Meyer; William D. Boswell; Ronald L. Burkes; John W. Parker; Florence M. Hofman; Ruth Dworsky; Robert J. Lukes

Primary central nervous system lymphoma constitutes one of the criteria for the acquired immune deficiency syndrome (AIDS), yet a paucity of information is currently available regarding the clinical, immunologic, or pathologic features of these patients. Six homosexual men presenting with primary central nervous system lymphoma were evaluated. Five of these patients presented with altered mental status. All lymphomas were intracranial. B cell immunoblastic sarcoma was found in five. Immune phenotyping studies performed in five patients revealed monoclonal lambda light chain in three, whereas one expressed only IgG heavy chain, and one demonstrated another B cell (LN-1) surface antigen. Hypodense, contrast-enhancing lesions were apparent on computed axial tomographic scanning of the brain, in sharp contrast to isodense or hyperdense lesions reported in primary central nervous system lymphomas without underlying immunodeficiency. Immunologic abnormalities in these patients were similar to those in AIDS presenting as Kaposis sarcoma or with opportunistic infections. In spite of therapeutic interventions, survival was short, and only one patient is currently alive.


Journal of Neuroimmunology | 1997

EXTENSIVE PEROXYNITRITE ACTIVITY DURING PROGRESSIVE STAGES OF CENTRAL NERVOUS SYSTEM INFLAMMATION

Roel C. van der Veen; David R. Hinton; Francesca Incardonna; Florence M. Hofman

Nitric oxide (NO) production has been associated with disease activity in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). This free radical can be transformed by superoxide to peroxynitrite, an extremely toxic oxidant which causes lipid peroxidation. In addition, peroxynitrite nitrates tyrosine residues, resulting in nitrotyrosine, which can be identified immunohistochemically. The results of this study indicate that peroxynitrite is formed very early during EAE development, correlating with clinical disease activity. Nitrotyrosine-positive cells display a widespread distribution in brain and spinal cord during severe disease and are associated with both perivascular infiltrates and parenchymal sites. Double-staining procedures demonstrated that a subpopulation of CD11b-positive cells (macrophages/microglia) reacted with nitrotyrosine antibodies. Immunostaining for inducible NO synthase demonstrated a similar distribution as nitrotyrosine staining. These experiments indicate that peroxynitrite is formed during progressive stages of disease activity.

Collaboration


Dive into the Florence M. Hofman's collaboration.

Top Co-Authors

Avatar

Thomas C. Chen

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Axel H. Schönthal

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Stan G. Louie

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Weijun Wang

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

David R. Hinton

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Nicos A. Petasis

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Hee-Yeon Cho

University of Southern California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clive R. Taylor

University of Southern California

View shared research outputs
Top Co-Authors

Avatar

Niyati Jhaveri

University of Southern California

View shared research outputs
Researchain Logo
Decentralizing Knowledge