Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Florence Oury-Donat is active.

Publication


Featured researches published by Florence Oury-Donat.


Hepatology | 2007

Rimonabant reduces obesity-associated hepatic steatosis and features of metabolic syndrome in obese zucker fa/fa rats

Magali Gary-Bobo; Ghizlane Elachouri; Jean François Gallas; Philip Janiak; Pietro Marini; Christine Ravinet-Trillou; Michèle Chabbert; Noël Cruccioli; Christian Pfersdorff; Claude Roque; Michèle Arnone; T. Croci; P. Soubrié; Florence Oury-Donat; Jean Pierre Maffrand; Bernard Scatton; Frederic Lacheretz; Gérard Le Fur; Jean Marc Herbert; Mohammed Bensaid

This study investigated the effects of rimonabant (SR141716), an antagonist of the cannabinoid receptor type 1 (CB1), on obesity‐associated hepatic steatosis and related features of metabolic syndrome: inflammation (elevated plasma levels of tumor necrosis factor alpha [TNFα]), dyslipidemia, and reduced plasma levels of adiponectin. We report that oral treatment of obese (fa/fa) rats with rimonabant (30 mg/kg) daily for 8 weeks abolished hepatic steatosis. This treatment reduced hepatomegaly, reduced elevation of plasma levels of enzyme markers of hepatic damage (alanine aminotransferase, gamma glutamyltransferase, and alkaline phosphatase) and decreased the high level of local hepatic TNFα currently associated with steatohepatitis. In parallel, treatment of obese (fa/fa) rats with rimonabant reduced the high plasma level of the proinflammatory cytokine TNFα and increased the reduced plasma level of the anti‐inflammatory hormone adiponectin. Finally, rimonabant treatment also improved dyslipidemia by both decreasing plasma levels of triglycerides, free fatty acids, and total cholesterol and increasing the HDLc/LDLc ratio. All the effects of rimonabant found in this study were not or only slightly observed in pair‐fed obese animals, highlighting the additional beneficial effects of treatment with rimonabant compared to diet. These results demonstrate that rimonabant plays a hepatoprotective role and suggest that this CB1 receptor antagonist potentially has clinical applications in the treatment of obesity‐associated liver diseases and related features of metabolic syndrome. (HEPATOLOGY 2007.)


Neuropsychopharmacology | 2007

SSR180711, a Novel Selective |[alpha]|7 Nicotinic Receptor Partial Agonist: (II) Efficacy in Experimental Models Predictive of Activity Against Cognitive Symptoms of Schizophrenia

Philippe Pichat; Olivier Bergis; Jean-Paul Terranova; Alexandre Urani; Christine Duarte; Vincent Santucci; Christiane Gueudet; Carole Voltz; Régis Steinberg; Jeanne Stemmelin; Florence Oury-Donat; Patrick Avenet; Guy Griebel; Bernard Scatton

SSR180711 (4-bromophenyl 1,4diazabicyclo(3.2.2) nonane-4-carboxylate, monohydrochloride) is a selective α7 nicotinic receptor (n-AChR) partial agonist. Based on the purported implication of this receptor in cognitive deficits associated with schizophrenia, the present study assessed efficacy of SSR180711 (i.p. and p.o.) in different types of learning and memory involved in this pathology. SSR180711 enhanced episodic memory in the object recognition task in rats and mice (MED: 0.3 mg/kg), an effect mediated by the α7 n-AChR, as it was no longer seen in mice lacking this receptor. Efficacy was retained after repeated treatment (eight administrations over 5 days, 1 mg/kg), indicating lack of tachyphylaxia. SSR180711 also reversed (MED: 0.3 mg/kg) MK-801-induced deficits in retention of episodic memory in rats (object recognition). The drug reversed (MED: 0.3 mg/kg) selective attention impaired by neonatal phencyclidine (PCP) treatment and restored MK-801- or PCP-induced memory deficits in the Morris or linear maze (MED: 1–3 mg/kg). In neurochemical and electrophysiological correlates of antipsychotic drug action, SSR180711 increased extracellular levels of dopamine in the prefrontal cortex (MED: 1 mg/kg) and enhanced (3 mg/kg) spontaneous firing of retrosplenial cortex neurons in rats. Selectivity of SSR180711 was confirmed as these effects were abolished by methyllycaconitine (3 mg/kg, i.p. and 1 mg/kg, i.v., respectively), a selective α7 n-AChR antagonist. Additional antidepressant-like properties of SSR180711 were demonstrated in the forced-swimming test in rats (MED: 1 mg/kg), the maternal separation-induced ultrasonic vocalization paradigm in rat pups (MED: 3 mg/kg) and the chronic mild stress procedure in mice (10 mg/kg o.d. for 3 weeks). Taken together, these findings characterize SSR180711 as a promising new agent for the treatment of cognitive symptoms of schizophrenia. The antidepressant-like properties of SSR180711 are of added interest, considering the high prevalence of depressive symptoms in schizophrenic patients.


Neuropsychopharmacology | 2005

Neurochemical, electrophysiological and pharmacological profiles of the selective inhibitor of the glycine transporter-1 SSR504734, a potential new type of antipsychotic.

Ronan Depoortère; Gihad Dargazanli; Genevieve Estenne-Bouhtou; Annick Coste; Christophe Lanneau; Christophe Desvignes; Martine Poncelet; Michel Héaulme; Vincent Santucci; Michel Decobert; Annie Cudennec; Carolle Voltz; Denis Boulay; Jean Paul Terranova; Jeanne Stemmelin; Pierre Roger; Benoit Marabout; Mireille Sevrin; Xavier Vigé; Bruno Biton; Régis Steinberg; Dominique Françon; Richard Alonso; Patrick Avenet; Florence Oury-Donat; Ghislaine Perrault; Guy Griebel; Pascal George; Philippe Soubrie; Bernard Scatton

Noncompetitive N-methyl-D-aspartate (NMDA) blockers induce schizophrenic-like symptoms in humans, presumably by impairing glutamatergic transmission. Therefore, a compound potentiating this neurotransmission, by increasing extracellular levels of glycine (a requisite co-agonist of glutamate), could possess antipsychotic activity. Blocking the glycine transporter-1 (GlyT1) should, by increasing extracellular glycine levels, potentiate glutamatergic neurotransmission. SSR504734, a selective and reversible inhibitor of human, rat, and mouse GlyT1 (IC50=18, 15, and 38 nM, respectively), blocked reversibly the ex vivo uptake of glycine (mouse cortical homogenates: ID50: 5 mg/kg i.p.), rapidly and for a long duration. In vivo, it increased (minimal efficacious dose (MED): 3 mg/kg i.p.) extracellular levels of glycine in the rat prefrontal cortex (PFC). This resulted in an enhanced glutamatergic neurotransmission, as SSR504734 potentiated NMDA-mediated excitatory postsynaptic currents (EPSCs) in rat hippocampal slices (minimal efficacious concentration (MEC): 0.5 μM) and intrastriatal glycine-induced rotations in mice (MED: 1 mg/kg i.p.). It normalized activity in rat models of hippocampal and PFC hypofunctioning (through activation of presynaptic CB1 receptors): it reversed the decrease in electrically evoked [3H]acetylcholine release in hippocampal slices (MEC: 10 nM) and the reduction of PFC neurons firing (MED: 0.3 mg/kg i.v.). SSR504734 prevented ketamine-induced metabolic activation in mice limbic areas and reversed MK-801-induced hyperactivity and increase in EEG spectral energy in mice and rats, respectively (MED: 10–30 mg/kg i.p.). In schizophrenia models, it normalized a spontaneous prepulse inhibition deficit in DBA/2 mice (MED: 15 mg/kg i.p.), and reversed hypersensitivity to locomotor effects of d-amphetamine and selective attention deficits (MED: 1–3 mg/kg i.p.) in adult rats treated neonatally with phencyclidine. Finally, it increased extracellular dopamine in rat PFC (MED: 10 mg/kg i.p.). The compound showed additional activity in depression/anxiety models, such as the chronic mild stress in mice (10 mg/kg i.p.), ultrasonic distress calls in rat pups separated from their mother (MED: 1 mg/kg s.c.), and the increased latency of paradoxical sleep in rats (MED: 30 mg/kg i.p.). In conclusion, SSR504734 is a potent and selective GlyT1 inhibitor, exhibiting activity in schizophrenia, anxiety and depression models. By targeting one of the primary causes of schizophrenia (hypoglutamatergy), it is expected to be efficacious not only against positive but also negative symptoms, cognitive deficits, and comorbid depression/anxiety states.


Neuropsychopharmacology | 2007

SSR180711, a Novel Selective α 7 Nicotinic Receptor Partial Agonist: (1) Binding and Functional Profile

Bruno Biton; Olivier Bergis; Frederic Galli; Alain Nedelec; Alistair Lochead; Samir Jegham; Danielle Godet; Christophe Lanneau; Raphaël Santamaria; Françoise Chesney; Jacques Léonardon; Patrick Granger; Marc Williams Debono; Georg Andrees Bohme; Frédéric Sgard; François Besnard; David R. Graham; Annick Coste; André Oblin; Olivier Curet; Xavier Vigé; Corinne Voltz; Liliane Rouquier; J. Souilhac; Vincent Santucci; Christiane Gueudet; Dominique Françon; Régis Steinberg; Guy Griebel; Florence Oury-Donat

In this paper, we report on the pharmacological and functional profile of SSR180711 (1,4-Diazabicyclo[3.2.2]nonane-4-carboxylic acid, 4-bromophenyl ester), a new selective α7 acetylcholine nicotinic receptor (n-AChRs) partial agonist. SSR180711 displays high affinity for rat and human α7 n-AChRs (Ki of 22±4 and 14±1 nM, respectively). Ex vivo 3[H]α-bungarotoxin binding experiments demonstrate that SSR180711 rapidly penetrates into the brain (ID50=8 mg/kg p.o.). In functional studies performed with human α7 n-AChRs expressed in Xenopus oocytes or GH4C1 cells, the compound shows partial agonist effects (intrinsic activity=51 and 36%, EC50=4.4 and 0.9 μM, respectively). In rat cultured hippocampal neurons, SSR180711 induced large GABA-mediated inhibitory postsynaptic currents and small α-bungarotoxin sensitive currents through the activation of presynaptic and somato-dendritic α7 n-AChRs, respectively. In mouse hippocampal slices, the compound increased the amplitude of both glutamatergic (EPSCs) and GABAergic (IPSCs) postsynaptic currents evoked in CA1 pyramidal cells. In rat and mouse hippocampal slices, a concentration of 0.3 μM of SSR180711 increased long-term potentiation (LTP) in the CA1 field. Null mutation of the α7 n-AChR gene totally abolished SSR180711-induced modulation of EPSCs, IPSCs and LTP in mice. Intravenous administration of SSR180711 strongly increased the firing rate of single ventral pallidum neurons, extracellularly recorded in anesthetized rats. In microdialysis experiments, administration of the compound (3–10 mg/kg i.p.) dose-dependently increased extracellular acetylcholine (ACh) levels in the hippocampus and prefrontal cortex of freely moving rats. Together, these results demonstrate that SSR180711 is a selective and partial agonist at human, rat and mouse α7 n-AChRs, increasing glutamatergic neurotransmission, ACh release and LTP in the hippocampus.


European Journal of Pharmacology | 1998

Neurotensin is an antagonist of the human neurotensin NT2 receptor expressed in Chinese hamster ovary cells

Natalio Vita; Florence Oury-Donat; Pascale Chalon; Marie Guillemot; Mourad Kaghad; Andre Bachy; O. Thurneyssen; Stéphanie Garcia; Caroline Poinot-Chazel; Pierre Casellas; Peter Keane; Gérard Le Fur; Jean Pierre Maffrand; Philippe Soubrie; Daniel Caput; Pascual Ferrara

The human levocabastine-sensitive neurotensin NT2 receptor was cloned from a cortex cDNA library and stably expressed in Chinese hamster ovary (CHO) cells in order to study its binding and signalling characteristics. The receptor binds neurotensin as well as several other ligands already described for neurotensin NT1 receptor. It also binds levocabastine, a histamine H1 receptor antagonist that is not recognised by neurotensin NT1 receptor. Neurotensin binding to recombinant neurotensin NT2 receptor expressed in CHO cells does not elicit a biological response as determined by second messenger measurements. Levocabastine, and the peptides neuromedin N and xenin were also ineffective on neurotensin NT2 receptor activation. Experiments with the neurotensin NT1 receptor antagonists SR48692 and SR142948A, resulted in the unanticipated discovery that both molecules are potent agonists on neurotensin NT2 receptor. Both compounds, following binding to neurotensin NT2 receptor, enhance inositol phosphates (IP) formation with a subsequent [Ca2+]i mobilisation; induce arachidonic acid release; and stimulate mitogen-activated protein kinase (MAPK) activity. Interestingly, these activities are antagonised by neurotensin and levocabastine in a concentration-dependent manner. These activities suggest that the human neurotensin NT2 receptor may be of physiological importance and that a natural agonist for the receptor may exist.


FEBS Letters | 1995

SR120819A, AN ORALLY-ACTIVE AND SELECTIVE NEUROPEPTIDE Y Y1 RECEPTOR ANTAGONIST

Claudine Serradeil-Le Gal; Gerard Valette; Pierre-Eric Rouby; Alain Pellet; Florence Oury-Donat; Gabrielle Brossard; Liliane Lespy; Eléonore Marty; Gervais Neliat; Paul De Cointet; Jean-Pierre Maffrand; Gérard Le Fur

An orally‐active antagonist of neuropeptide Y (NPY) Y1 receptors, SR 120819A, has been characterized. This compound displays highly selective and competitive affinity for rat, guinea‐pig and human (K i = 15 nM) NPY Y1 receptors. In vitro, SR 120819A blocks the inhibitory effect of NPY on adenylyl cyclase activity in human SK‐N‐MC cells and that of the selective Y1 agonist, [Leu31,Pro34]NPY, on rabbit vas deferens contraction (pA2 = 7.20 ± 0.07). In vivo, by intravenous route, this compound acts as an antagonist in anesthetized guinea‐pigs and, notably, after oral administration, SR 120819A counteracts the pressor response of [Leu31,Pro34]NPY (5 μg/kg i.v.) with a long duration of action (>4 h at 5 mg/kg p.o.). Thus, SR 120819A is the first orally‐effective NPY Y1 receptor antagonist yet descrobed. It could be a useful tool for exploring the role of NPY and the therapeutic relevance of an antagonist at NPY Y1 receptors.


Pharmacology, Biochemistry and Behavior | 2008

Characterization of SSR103800, a selective inhibitor of the glycine transporter-1 in models predictive of therapeutic activity in schizophrenia.

Denis Boulay; Philippe Pichat; Gihad Dargazanli; Genevieve Estenne-Bouhtou; Jean Paul Terranova; Nancy Rogacki; Jeanne Stemmelin; Annick Coste; Christophe Lanneau; Christophe Desvignes; Caroline Cohen; Richard Alonso; Xavier Vigé; Bruno Biton; Régis Steinberg; Mireille Sevrin; Florence Oury-Donat; Pascal George; Olivier Bergis; Guy Griebel; Patrick Avenet; Bernard Scatton

On native human, rat and mouse glycine transporter-1(GlyT1), SSR130800 behaves as a selective inhibitor with IC50 values of 1.9, 5.3 and 6.8 nM, respectively. It reversibly blocked glycine uptake in mouse brain cortical homogenates, increased extracellular levels of glycine in the rat prefrontal cortex, and potentiated NMDA-mediated excitatory postsynaptic currents in rat hippocampal slices. SSR103800 (30 mg/kg, p.o.) decreased MK-801- and PCP-induced locomotor hyperactivity in rodents. SSR103800 (1 and 10 mg/kg, p.o.) attenuated social recognition deficit in adult rats induced by neonatal injections of PCP (10 mg/kg, s.c., on post-natal day 7, 9 and 11). SSR103800 (3 mg/kg, p.o.) counteracted the deficit in short-term visual episodic-like memory induced by a low challenge dose of PCP (1 mg/kg, i.p.), in PCP-sensitized rats (10 mg/kg, i.p.). SSR103800 (30 mg/kg, i.p.) increased the prepulse inhibition of the startle reflex in DBA/1J mice. SSR103800 decreased defensive- and despair-related behaviors in the tonic immobility test in gerbils (10 and 30 mg/kg, p.o.) and in the forced-swimming procedure in rats (1 and 3 mg/kg, p.o.), respectively. These findings suggest that SSR103800 may have a therapeutic potential in the management of the core symptoms of schizophrenia and comorbid depression states.


European Journal of Neuroscience | 1998

Expression and presence of septal neurokinin-2 receptors controlling hippocampal acetylcholine release during sensory stimulation in rat

Régis Steinberg; N. Marco; B. Voutsinos; Mohammed Bensaid; D. Rodier; J. Souilhac; R Alonso; Florence Oury-Donat; G.Le Fur; P. Soubrié

We examined the expression and presence of NK2 receptors in the septal area of rat brain, and investigated their functional role in the regulation of the septohippocampal cholinergic system. Using reverse transcription‐polymerase chain reaction (RT‐PCR) analysis, we showed the presence of NK2 receptor mRNA expression in the septal area, and detected septal NK2 binding sites by using a fluorescent‐tagged neurokinin A (NKA) derivative. In vivo microdialysis was employed to explore the functional role of NK2 receptors in the release of hippocampal acetylcholine evoked by tactile stimulation in freely moving rats. Two sessions of stroking of the neck and back of the rat for 30 min, at 90 min intervals, produced a marked and reproducible increase in hippocampal acetylcholine release. This effect was dose‐dependently prevented by intraperitoneal administration of the two selective non‐peptide tachykinin NK2 receptor antagonists SR144190 (0.03–0.3 mg/kg, i.p.) and SR48968 (0.3 and 1 mg/kg, i.p.), but not by the inactive enantiomer of SR48968 (SR48965, 1 mg/kg) nor by the two non‐peptide NK1 receptor antagonists SR140333 (3 mg/kg, i.p.) and GR205171 (1 mg/kg, i.p.). Furthermore, the intraseptal application of SR144190 (10–8m) reduced the sensory response. Finally, intraseptal perfusion of neurokinin A (0.01–10 μm) in anaesthetized rats produced a concentration‐dependent increase in hippocampal acetylcholine release. The response to neurokinin A (0.1 μm) was prevented by SR144190 (0.03–0.3 mg/kg, i.p.) and SR48968 (0.3–1 mg/kg, i.p.). In conclusion, this study provides direct evidence for the role of endogenous NKA/substance P, through the activation of NK2 receptors, in regulating the septohippocampal cholinergic function.


Neuroscience | 2008

Effects of the β3-adrenoceptor (Adrb3) agonist SR58611A (amibegron) on serotonergic and noradrenergic transmission in the rodent: Relevance to its antidepressant/anxiolytic-like profile

Y. Claustre; M. Leonetti; V. Santucci; I. Bougault; Christophe Desvignes; L. Rouquier; N. Aubin; Peter Keane; S. Busch; Y. Chen; V. Palejwala; M. Tocci; P. Yamdagni; M. Didier; Patrick Avenet; G Le Fur; Florence Oury-Donat; Bernard Scatton; Régis Steinberg

SR58611A is a selective beta(3)-adrenoceptor (Adrb3) agonist which has demonstrated antidepressant and anxiolytic properties in rodents. The present study confirmed the detection of Adrb3 mRNA transcript in rodent brain sub-regions and evaluated the effect of SR58611A on serotonergic and noradrenergic transmission in rats and mice in an attempt to elucidate the mechanism(s) underlying these properties. SR58611A (3 and 10 mg/kg, p.o.) increased the synthesis of 5-HT and tryptophan (Trp) levels in several rodent brain areas (cortex, hippocampus, hypothalamus, striatum). Moreover, SR58611A (10 mg/kg, p.o.) increased the release of 5-HT assessed by in vivo microdialysis in rat prefrontal cortex. Systemic (3 mg/kg, i.v.) or chronic administration of SR58611A (10 mg/kg, p.o.), in contrast to fluoxetine (15 mg/kg, p.o.), did not modify the activity of serotonergic neurons in the rat dorsal raphe nucleus. The increase in 5-HT synthesis induced by SR58611A was not observed in Adrb3s knockout mice, suggesting a selective involvement of Adrb3s in this effect. SR58611A (3 and 10 mg/kg, p.o.) did not modify norepinephrine synthesis and metabolism but increased its release in rat brain. Repeated administration of SR58611A (10 mg/kg, p.o.) did not modify basal norepinephrine release in rat prefrontal cortex whereas it prevented its tail-pinch stress-induced enhancement similarly to reboxetine (15 mg/kg, p.o.). Finally SR58611A increased the firing rate of noradrenergic neurons in the rat locus coeruleus following systemic (3 mg/kg, i.v.) or local (0.01 and 1 microM) but not chronic (10 mg/kg, p.o.) administration. These results suggest that the anxiolytic- and antidepressant-like activities of SR58611A involve an increase of brain serotonergic and noradrenergic neurotransmissions, triggered by activation of Adrb3s.


Journal of Neurochemistry | 2002

Characterization of CB1 receptors on rat neuronal cell cultures : Binding and functional studies using the selective receptor antagonist SR 141716A

Mireille Jung; R. Calassi; Murielle Rinaldi-Carmona; P. Chardenot; G. Le Fur; P. Soubrié; Florence Oury-Donat

Abstract: This study was undertaken to characterize further the central cannabinoid receptors in rat primary neuronal cell cultures from selected brain structures. By using [3H]SR 141716A, the specific CB1 receptor antagonist, we demonstrate in cortical neurons the presence of a high density of specific binding sites (Bmax = 139 ± 9 fmol/mg of protein) displaying a high affinity (KD = 0.76 ± 0.09 nM). The two cannabinoid receptor agonists, CP 55940 and WIN 55212‐2, inhibited in a concentration‐dependent manner cyclic AMP production induced by either 1 µM forskolin or isoproterenol with EC50 values in the nanomolar range (4.6 and 65 nM with forskolin and 1.0 and 5.1 nM with isoproterenol for CP 55940 and WIN 55212‐2, respectively). Moreover, in striatal neurons and cerebellar granule cells, CP 55940 was also able to reduce the cyclic AMP accumulation induced by 1 µM forskolin with a potency similar to that observed in cortical neurons (EC50 values of 3.5 and 1.9 nM in striatum and cerebellum, respectively). SR 141716A antagonized the CP 55940‐ and WIN 55212‐2‐induced inhibition of cyclic AMP accumulation, suggesting CB1 receptor‐specific mediation of these effects on all primary cultures tested. Furthermore, CP 55940 was unable to induce mitogen‐activated protein kinase activation in either cortical or striatal neurons. In conclusion, our results show nanomolar efficiencies for CP 55940 and WIN 55212‐2 on adenylyl cyclase activity and no effect on any other signal transduction pathway investigated in primary neuronal cultures.

Collaboration


Dive into the Florence Oury-Donat's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

P. Soubrié

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

O. Thurneyssen

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

Guy Griebel

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Patrick Avenet

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Danielle Gully

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jean-Paul Terranova

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Robert Boigegrain

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge