Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Florence Pache is active.

Publication


Featured researches published by Florence Pache.


Journal of Immunology | 2011

The NLRP3 Inflammasome Is Differentially Activated by Pneumolysin Variants and Contributes to Host Defense in Pneumococcal Pneumonia

Martin Witzenrath; Florence Pache; Daniel Lorenz; Uwe Koppe; Birgitt Gutbier; Christoph Tabeling; Katrin Reppe; Karolin Meixenberger; Anca Dorhoi; Jiangtao Ma; Ashleigh Holmes; George Trendelenburg; Markus M. Heimesaat; Stefan Bereswill; Mark van der Linden; Jürg Tschopp; Timothy J. Mitchell; Norbert Suttorp; Bastian Opitz

Streptococcus pneumoniae is a leading cause of pneumonia, meningitis, and sepsis. Pneumococci can be divided into >90 serotypes that show differences in the pathogenicity and invasiveness. We tested the hypotheses that the innate immune inflammasome pathway is involved in fighting pneumococcal pneumonia and that some invasive pneumococcal types are not recognized by this pathway. We show that human and murine mononuclear cells responded to S. pneumoniae expressing hemolytic pneumolysin by producing IL-1β. This IL-1β production depended on the NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome. Some serotype 1, serotype 8, and serotype 7F bacteria, which have previously been associated with increased invasiveness and with production of toxins with reduced hemolytic activity, or bacterial mutants lacking pneumolysin did not stimulate notable IL-1β production. We further found that NLRP3 was beneficial for mice during pneumonia caused by pneumococci expressing hemolytic pneumolysin and was involved in cytokine production and maintenance of the pulmonary microvascular barrier. Overall, the inflammasome pathway is protective in pneumonia caused by pneumococci expressing hemolytic toxin but is not activated by clinically important pneumococcal sequence types causing invasive disease. The study indicates that a virulence factor polymorphism may substantially affect the recognition of bacteria by the innate immune system.


Journal of Immunology | 2010

Listeria monocytogenes-infected human peripheral blood mononuclear cells produce IL-1beta, depending on listeriolysin O and NLRP3.

Karolin Meixenberger; Florence Pache; Julia Eitel; Bernd Schmeck; Stefan Hippenstiel; Hortense Slevogt; Philippe Dje N'Guessan; Martin Witzenrath; Mihai G. Netea; Trinad Chakraborty; Norbert Suttorp; Bastian Opitz

Different NOD-like receptors, including NLRP1, NLRP3, and NLRC4, as well as the recently identified HIN-200 protein, AIM2, form multiprotein complexes called inflammasomes, which mediate caspase-1–dependent processing of pro-IL-1β. Listeria monocytogenes is an intracellular pathogen that is actively phagocytosed by monocytes/macrophages and subsequently escapes from the phagosome into the host cell cytosol, depending on its pore-forming toxin listeriolysin O (LLO). In this study, we demonstrate that human PBMCs produced mature IL-1β when infected with wild-type L. monocytogenes or when treated with purified LLO. L. monocytogenes mutants lacking LLO or expressing a noncytolytic LLO as well as the avirulent Listeria innocua induced strongly impaired IL-1β production. RNA interference and inhibitor experiments in human PBMCs as well as experiments in Nlrp3 and Rip2 knockout bone marrow-derived macrophages demonstrated that the Listeria-induced IL-1β release was dependent on ASC, caspase-1, and NLRP3, whereas NOD2, Rip2, NLRP1, NLRP6, NLRP12, NLRC4, and AIM2 appeared to be dispensable. We found that L. monocytogenes-induced IL-1β production was largely dependent on phagosomal acidification and cathepsin B release, whereas purified LLO activated an IL-1β production independently of these mechanisms. Our results indicate that L. monocytogenes-infected human PBMCs produced IL-1β, largely depending on an LLO-mediated phagosomal rupture and cathepsin B release, which is sensed by Nlrp3. In addition, an LLO-dependent but cathepsin B-independent NLRP3 activation might contribute to some extent to the IL-1β production in L. monocytogenes-infected cells.


Annals of Neurology | 2016

Neuromyelitis optica: Evaluation of 871 attacks and 1,153 treatment courses.

Ingo Kleiter; Anna Gahlen; Nadja Borisow; Katrin Fischer; Klaus-Dieter Wernecke; Brigitte Wegner; Kerstin Hellwig; Florence Pache; Klemens Ruprecht; Joachim Havla; Markus Krumbholz; Tania Kümpfel; Orhan Aktas; Hans-Peter Hartung; Marius Ringelstein; Christian Geis; Christoph Kleinschnitz; Achim Berthele; Bernhard Hemmer; Klemens Angstwurm; Jan-Patrick Stellmann; Simon Schuster; Martin Stangel; Florian Lauda; Hayrettin Tumani; Christoph Mayer; Lena Zeltner; Ulf Ziemann; Ralf A. Linker; Matthias Schwab

Neuromyelitis optica (NMO) attacks often are severe, are difficult to treat, and leave residual deficits. Here, we analyzed the frequency, sequence, and efficacy of therapies used for NMO attacks.


Neuroimmunology and Neuroinflammation | 2016

Serum peptide reactivities may distinguish neuromyelitis optica subgroups and multiple sclerosis

Imke Metz; Tim Beißbarth; David Ellenberger; Florence Pache; Lidia Stork; Marius Ringelstein; Orhan Aktas; Sven Jarius; Brigitte Wildemann; Hassan Dihazi; Tim Friede; Wolfgang Brück; Klemens Ruprecht; Friedemann Paul

Objective: To assess in an observational study whether serum peptide antibody reactivities may distinguish aquaporin-4 (AQP4) antibody (Ab)–positive and -negative neuromyelitis optica spectrum disorders (NMOSD) and relapsing-remitting multiple sclerosis (RRMS). Methods: We screened 8,700 peptides that included human and viral antigens of potential relevance for inflammatory demyelinating diseases and random peptides with pooled sera from different patient groups and healthy controls to set up a customized microarray with 700 peptides. With this microarray, we tested sera from 66 patients with AQP4-Ab-positive (n = 16) and AQP4-Ab-negative (n = 19) NMOSD, RRMS (n = 11), and healthy controls (n = 20). Results: Differential peptide reactivities distinguished NMOSD subgroups from RRMS in 80% of patients. However, the 2 NMOSD subgroups were not well-discriminated, although those patients are clearly separated by their antibody reactivities against AQP4 in cell-based assays. Elevated reactivities to myelin and Epstein-Barr virus peptides were present in RRMS and to AQP4 and AQP1 peptides in AQP4-Ab-positive NMOSD. Conclusions: While AQP4-Ab-positive and -negative NMOSD subgroups are not well-discriminated by peptide antibody reactivities, our findings suggest that peptide antibody reactivities may have the potential to distinguish between both NMOSD subgroups and MS. Future studies should thus concentrate on evaluating peptide antibody reactivities for the differentiation of AQP4-Ab-negative NMOSD and MS.


Acta Neuropathologica | 2015

Tracking CNS and systemic sources of oxidative stress during the course of chronic neuroinflammation

Agata Mossakowski; Julian Pohlan; Daniel Bremer; Randall L. Lindquist; Jason M. Millward; Markus Bock; Karolin Pollok; Ronja Mothes; Leonard Viohl; Moritz Radbruch; Jenny Gerhard; Judith Bellmann-Strobl; Janina Behrens; Carmen Infante-Duarte; Anja Mähler; Michael Boschmann; Jan Leo Rinnenthal; Martina Füchtemeier; Josephine Herz; Florence Pache; Markus Bardua; Josef Priller; Anja E. Hauser; Friedemann Paul; Raluca Niesner; Helena Radbruch

The functional dynamics and cellular sources of oxidative stress are central to understanding MS pathogenesis but remain elusive, due to the lack of appropriate detection methods. Here we employ NAD(P)H fluorescence lifetime imaging to detect functional NADPH oxidases (NOX enzymes) in vivo to identify inflammatory monocytes, activated microglia, and astrocytes expressing NOX1 as major cellular sources of oxidative stress in the central nervous system of mice affected by experimental autoimmune encephalomyelitis (EAE). This directly affects neuronal function in vivo, indicated by sustained elevated neuronal calcium. The systemic involvement of oxidative stress is mirrored by overactivation of NOX enzymes in peripheral CD11b+ cells in later phases of both MS and EAE. This effect is antagonized by systemic intake of the NOX inhibitor and anti-oxidant epigallocatechin-3-gallate. Together, this persistent hyper-activation of oxidative enzymes suggests an “oxidative stress memory” both in the periphery and CNS compartments, in chronic neuroinflammation.


Multiple sclerosis and related disorders | 2017

Severe structural and functional visual system damage leads to profound loss of vision-related quality of life in patients with neuromyelitis optica spectrum disorders

Felix Schmidt; Hanna Zimmermann; Janine Mikolajczak; Frederike C. Oertel; Florence Pache; Maria Weinhold; Johann Schinzel; Judith Bellmann-Strobl; Klemens Ruprecht; Friedemann Paul; Alexander U. Brandt

BACKGROUND Neuromyelitis optica spectrum disorders (NMOSD) are characterized by devastating optic neuritis attacks causing more structural damage and visual impairment than in multiple sclerosis (MS). The objective of this study was to compare vision-related quality of life in NMOSD and MS patients and correlate it to structural retinal damage and visual function. METHODS Thirty-one NMOSD and 31 matched MS patients were included. Vision-related quality of life was assessed with the 39-item National Eye Institute Visual Function Questionnaire (NEI-VFQ). All patients underwent retinal optical coherence tomography and visual acuity and contrast sensitivity measurements. RESULTS Vision-related quality of life was reduced in NMOSD compared to MS patients. This difference was driven by a higher incidence of bilateral and more severe optic neuritis in the NMOSD group. Retinal thinning and visual impairment were significantly greater in the NMOSD cohort. Lower vision-related quality of life was associated with more retinal damage and reduced visual function as assessed by visual acuity and contrast sensitivity. CONCLUSION NMOSD-related bilateral ON-attacks cause severe structural damage and visual impairment that lead to severe loss of vision-related quality of life. The NEI-VFQ is a helpful tool to monitor vision-related quality of life in NMOSD patients.


Journal of Neurology, Neurosurgery, and Psychiatry | 2017

Immunotherapies in neuromyelitis optica spectrum disorder: efficacy and predictors of response

Jan-Patrick Stellmann; Markus Krumbholz; Tim Friede; Anna Gahlen; Nadja Borisow; Katrin Fischer; Kerstin Hellwig; Florence Pache; Klemens Ruprecht; Joachim Havla; Tania Kümpfel; Orhan Aktas; Hans-Peter Hartung; Marius Ringelstein; Christian Geis; Christoph Kleinschnitz; Achim Berthele; Bernhard Hemmer; Klemens Angstwurm; Kim Lea Young; Simon Schuster; Martin Stangel; Florian Lauda; Hayrettin Tumani; Christoph Mayer; Lena Zeltner; Ulf Ziemann; Ralf A. Linker; Matthias Schwab; Martin Marziniak

Objective To analyse predictors for relapses and number of attacks under different immunotherapies in patients with neuromyelitis optica spectrum disorder (NMOSD). Design This is a retrospective cohort study conducted in neurology departments at 21 regional and university hospitals in Germany. Eligible participants were patients with aquaporin-4-antibody-positive or aquaporin-4-antibody-negative NMOSD. Main outcome measures were HRs from Cox proportional hazard regression models adjusted for centre effects, important prognostic factors and repeated treatment episodes. Results 265 treatment episodes with a mean duration of 442 days (total of 321 treatment years) in 144 patients (mean age at first attack: 40.9 years, 82.6% female, 86.1% aquaporin-4-antibody-positive) were analysed. 191 attacks occurred during any of the treatments (annual relapse rate=0.60). The most common treatments were rituximab (n=77, 111 patient-years), azathioprine (n=52, 68 patient-years), interferon-β (n=32, 61 patient-years), mitoxantrone (n=34, 32.1 patient-years) and glatiramer acetate (n=17, 10 patient-years). Azathioprine (HR=0.4, 95% CI 0.3 to 0.7, p=0.001) and rituximab (HR=0.6, 95% CI 0.4 to 1.0, p=0.034) reduced the attack risk compared with interferon-β, whereas mitoxantrone and glatiramer acetate did not. Patients who were aquaporin-4-antibody-positive had a higher risk of attacks (HR=2.5, 95% CI 1.3 to 5.1, p=0.009). Every decade of age was associated with a lower risk for attacks (HR=0.8, 95% CI 0.7 to 1.0, p=0.039). A previous attack under the same treatment tended to be predictive for further attacks (HR=1.5, 95% CI 1.0 to 2.4, p=0.065). Conclusions Age, antibody status and possibly previous attacks predict further attacks in patients treated for NMOSD. Azathioprine and rituximab are superior to interferon-β.


Neuroimmunology and Neuroinflammation | 2016

Insufficient treatment of severe depression in neuromyelitis optica spectrum disorder

Velina Sevdalinova Chavarro; Maureen A. Mealy; Alexandra Simpson; Anna Lacheta; Florence Pache; Klemens Ruprecht; Stefan M. Gold; Friedemann Paul; Alexander U. Brandt; Michael Levy

Objective: To investigate depression frequency, severity, current treatment, and interactions with somatic symptoms among patients with neuromyelitis optica spectrum disorder (NMOSD). Methods: In this dual-center observational study, we included 71 patients diagnosed with NMOSD according to the International Panel for NMO Diagnosis 2015 criteria. The Beck Depression Inventory (BDI) was classified into severe, moderate, or minimal/no depressive state category. We used the Fatigue Severity Scale to evaluate fatigue. Scores from the Brief Pain Inventory and the PainDETECT Questionnaire were normalized to estimate neuropathic pain. Psychotropic, pain, and immunosuppressant medications were tabulated by established classes. Results: Twenty-eight percent of patients with NMOSD (n = 20) had BDI scores indicative of moderate or severe depression; 48% of patients (n = 34) endorsed significant levels of neuropathic pain. Severity of depression was moderately associated with neuropathic pain (r = 0.341, p < 0.004) but this relationship was confounded by levels of fatigue. Furthermore, only 40% of patients with moderate or severe depressive symptoms received antidepressant medical treatment. Fifty percent of those treated reported persistent moderate to severe depressive symptoms under treatment. Conclusions: Moderate and severe depression in patients with NMOSD is associated with neuropathic pain and fatigue and is insufficiently treated. These results are consistent across 2 research centers and continents. Future research needs to address how depression can be effectively managed and treated in NMOSD.


Neuroimmunology and Neuroinflammation | 2016

Normal volumes and microstructural integrity of deep gray matter structures in AQP4+ NMOSD

Carsten Finke; Josephine Heine; Florence Pache; Anna Lacheta; Nadja Borisow; Joseph Kuchling; Judith Bellmann-Strobl; Klemens Ruprecht; Alexander U. Brandt; Friedemann Paul

Objective: To assess volumes and microstructural integrity of deep gray matter structures in a homogeneous cohort of patients with neuromyelitis optica spectrum disorder (NMOSD). Methods: This was a cross-sectional study including 36 aquaporin-4 antibody-positive (AQP4 Ab-positive) Caucasian patients with NMOSD and healthy controls matched for age, sex, and education. Volumetry of deep gray matter structures (DGM; thalamus, caudate, putamen, globus pallidus, hippocampus, amygdala, nucleus accumbens) was performed using 2 independent automated methods. Microstructural integrity was assessed based on diffusion tensor imaging. Results: Both volumetric analysis methods consistently revealed similar volumes of DGM structures in patients and controls without significant group differences. Moreover, no differences in DGM microstructural integrity were observed between groups. Conclusions: Deep gray matter structures are not affected in AQP4 Ab-positive Caucasian patients with NMOSD. NMOSD imaging studies should be interpreted with respect to Ab status, educational background, and ethnicity of included patients.


Journal of Neuroinflammation | 2014

Aquaporin-4 antibody testing: direct comparison of M1-AQP4-DNA-transfected cells with leaky scanning versus M23-AQP4-DNA-transfected cells as antigenic substrate

Sven Jarius; Friedemann Paul; Kai Fechner; Klemens Ruprecht; Ingo Kleiter; Diego Franciotta; Marius Ringelstein; Florence Pache; Orhan Aktas; Brigitte Wildemann

BackgroundNeuromyelitis optica (NMO, Devic syndrome) is associated with antibodies to aquaporin-4 (NMO-IgG/AQP4-Ab) in the majority of cases. NMO-IgG/AQP4-Ab seropositivity in patients with NMO and its spectrum disorders has important differential diagnostic, prognostic and therapeutic implications. So-called cell-based assays (CBA) are thought to provide the best AQP4-Ab detection rates.ObjectiveTo compare directly the AQP4-IgG detection rates of the currently most widely used commercial CBA, which employs cells transfected with a full-length (M1)-human AQP4 DNA in a fashion that allows leaky scanning (LS) and thus expression of M23-AQP4 in addition to M1-AQP, to that of a newly developed CBA from the same manufacturer employing cells transfected with human M23-AQP4-DNA.MethodsResults from 368 serum samples that had been referred for routine AQP4-IgG determination and had been tested in parallel in the two assays were compared.ResultsSeventy-seven out of 368 samples (20.9%) were positive for NMO-IgG/AQP4-Ab in at least one assay. Of these, 73 (94.8%) were positive in both assays. A single sample (1.3%) was exclusively positive in the novel assay; three samples (3.9%) were unequivocally positive only in the ‘classic’ assay due to high background intensity in the novel assay. Both median fluorescence intensity and background intensity were higher in the new assay.ConclusionsThis large study did not reveal significant differences in AQP4-IgG detection rates between the ‘classic’ CBA and a new M23-DNA-based CBA. Importantly, our results largely re-affirm the validity of previous studies that had used the ‘classic’ AQP4-CBA to establish NMO-IgG/AQP4-Ab seropositivity rates in NMO and in a variety of NMO spectrum disorders.

Collaboration


Dive into the Florence Pache's collaboration.

Top Co-Authors

Avatar

Friedemann Paul

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Orhan Aktas

University of Düsseldorf

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge