Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Florence Ragon is active.

Publication


Featured researches published by Florence Ragon.


Journal of the American Chemical Society | 2012

How Water Fosters a Remarkable 5-Fold Increase in Low-Pressure CO2 Uptake within Mesoporous MIL-100(Fe)

Estelle Soubeyrand‐Lenoir; Christelle Vagner; Ji Woong Yoon; Philippe Bazin; Florence Ragon; Young Kyu Hwang; Christian Serre; Jong-San Chang; Philip Llewellyn

The uptake and adsorption enthalpy of carbon dioxide at 0.2 bar have been studied in three different topical porous MOF samples, HKUST-1, UiO-66(Zr), and MIL-100(Fe), after having been pre-equilibrated under different relative humidities (3, 10, 20, 40%) of water vapor. If in the case of microporous UiO-66, CO(2) uptake remained similar whatever the relative humidity, and correlations were difficult for microporous HKUST-1 due to its relative instability toward water vapor. In the case of MIL-100(Fe), a remarkable 5-fold increase in CO(2) uptake was observed with increasing RH, up to 105 mg g(-1) CO(2) at 40% RH, in parallel with a large decrease in enthalpy measured. Cycling measurements show slight differences for the initial three cycles and complete reversibility with further cycles. These results suggest an enhanced solubility of CO(2) in the water-filled mesopores of MIL-100(Fe).


Journal of the American Chemical Society | 2011

p-Xylene-Selective Metal-Organic Frameworks: A Case of Topology-Directed Selectivity

Frederik Vermoortele; Michael Maes; Peyman Z. Moghadam; Matthew J. Lennox; Florence Ragon; Mohammed Boulhout; Shyam Biswas; Katrien G. M. Laurier; Isabelle Beurroies; Renaud Denoyel; Maarten B. J. Roeffaers; Norbert Stock; Tina Düren; Christian Serre; Dirk E. De Vos

Para-disubstituted alkylaromatics such as p-xylene are preferentially adsorbed from an isomer mixture on three isostructural metal-organic frameworks: MIL-125(Ti) ([Ti(8)O(8)(OH)(4)(BDC)(6)]), MIL-125(Ti)-NH(2) ([Ti(8)O(8)(OH)(4)(BDC-NH(2))(6)]), and CAU-1(Al)-NH(2) ([Al(8)(OH)(4)(OCH(3))(8)(BDC-NH(2))(6)]) (BDC = 1,4-benzenedicarboxylate). Their unique structure contains octahedral cages, which can separate molecules on the basis of differences in packing and interaction with the pore walls, as well as smaller tetrahedral cages, which are capable of separating molecules by molecular sieving. These experimental data are in line with predictions by molecular simulations. Additional adsorption and microcalorimetric experiments provide insight in the complementary role of the two cage types in providing the para selectivity.


Journal of Materials Chemistry B | 2014

Cytotoxicity of nanoscaled metal–organic frameworks

Cristina Tamames-Tabar; Denise Cunha; Edurne Imbuluzqueta; Florence Ragon; Christian Serre; María J. Blanco-Prieto; Patricia Horcajada

A series of fourteen porous Metal-Organic Frameworks (MOFs) with different compositions (Fe, Zn, and Zr; carboxylates or imidazolates) and structures have been successfully synthesised at the nanoscale and fully characterised by XRPD, FTIR, TGA, N2 porosimetry, TEM, DLS and ζ-potential. Their toxicological assessment was performed using two different cell lines: human epithelial cells from foetal cervical carcinoma (HeLa) and murine macrophage cell line (J774). It appears that MOF nanoparticles (NPs) exhibit low cytotoxicity, comparable to those of other commercialised nanoparticulate systems, the less toxic being the Fe carboxylate and the more toxic being the zinc imidazolate NPs. The cytotoxicity values, higher in J774 cells than in HeLa cells, are mainly function of their composition and cell internalisation capacity. Finally, cell uptake of one of the most relevant Fe-MOF-NPs for drug vectorisation has been investigated by confocal microscopy studies, and indicates a faster kinetics of cell penetration within J774 compared to HeLa cells.


Inorganic Chemistry | 2014

In situ energy-dispersive X-ray diffraction for the synthesis optimization and scale-up of the porous zirconium terephthalate UiO-66.

Florence Ragon; Patricia Horcajada; Hubert Chevreau; Young Kyu Hwang; U-Hwang Lee; Stuart R. Miller; Thomas Devic; Jong-San Chang; Christian Serre

The synthesis optimization and scale-up of the benchmarked microporous zirconium terephthalate UiO-66(Zr) were investigated by evaluating the impact of several parameters (zirconium precursors, acidic conditions, addition of water, and temperature) over the kinetics of crystallization by time-resolved in situ energy-dispersive X-ray diffraction. Both the addition of hydrochloric acid and water were found to speed up the reaction. The use of the less acidic ZrOCl2·8H2O as the precursor seemed to be a suitable alternative to ZrCl4·xH2O, avoiding possible reproducibility issues as a consequence of the high hygroscopic character of ZrCl4. ZrOCl2·8H2O allowed the formation of smaller good quality UiO-66(Zr) submicronic particles, paving the way for their use within the nanotechnology domain, in addition to higher reaction yields, which makes this synthesis route suitable for the preparation of UiO-66(Zr) at a larger scale. In a final step, UiO-66(Zr) was prepared using conventional reflux conditions at the 0.5 kg scale, leading to a rather high space-time yield of 490 kg m(-3) day(-1), while keeping physicochemical properties similar to those obtained from smaller scale solvothermally prepared batches.


Journal of Materials Chemistry | 2012

Probing the adsorption performance of the hybrid porous MIL-68(Al): a synergic combination of experimental and modelling tools

Qingyuan Yang; Sébastien Vaesen; Muthusamy Vishnuvarthan; Florence Ragon; Christian Serre; Alexandre Vimont; Marco Daturi; Guy De Weireld; Guillaume Maurin

A joint experimental/modelling approach has been conducted to get some insight into the microscopic mechanism in play for a series of small gas molecules including CH4, CO2, N2 and H2S in the porous aluminium-based (Al3+) terephthalate MIL-68 solid containing two distinct pore channels (MIL: Materials of Institute Lavoisier). A further step consisted of predicting the separation performances of this material for the CO2/CH4 and CO2/N2 mixtures that are compared to the other MOFs reported so far in the literature. The theoretical impact of the functionalization of the organic linker via amino groups on the selectivity of this hybrid material for these gas mixtures is then pointed out. Finally, the stability of the solid upon H2S adsorption which is commonly present in the raw natural gas is confirmed.


Journal of Materials Chemistry | 2015

Acid-functionalized UiO-66(Zr) MOFs and their evolution after intra-framework cross-linking: structural features and sorption properties

Florence Ragon; Betiana Campo; Qingyuan Yang; Charlotte Martineau; Andrew D. Wiersum; Ana Lago; Vincent Guillerm; Callum Hemsley; Jarrod F. Eubank; Muthusamy Vishnuvarthan; Francis Taulelle; Patricia Horcajada; Alexandre Vimont; Philip Llewellyn; Marco Daturi; Sabine Devautour-Vinot; Guillaume Maurin; Christian Serre; Thomas Devic; Guillaume Clet

The functionalization of metal–organic frameworks (MOFs) with free carboxylic groups is naturally difficult due to their potential coordination with metal ions. The impact of functionalizing the archetypical metal organic framework UiO-66(Zr) with free pending carboxylic groups was thus studied by a multi-technique approach. First, an environmentally friendly water synthesis route was developed to produce UiO-66(Zr)–(COOH)x (x = 1, 2) and the kinetics of crystallization was studied by in situ energy dispersive X-ray diffraction. In a second step, the structural features were studied by temperature-dependent X-ray diffractometry and further characterized by density functional theory calculations and solid-state nuclear magnetic resonance spectroscopy. The gas sorption properties, acidity and conductivity features were respectively assessed by gas isotherms and calorimetry, infrared spectroscopy and complex impedance spectroscopy. These data show the noticeable influence of the introduced acidic groups. Finally, it was shown that the thermal treatment of such solids leads to an intra-framework cross-linking associated with the formation of anhydride bridges, as evidenced by FTIR and solid-state NMR, and modelled by DFT simulations. These species have a strong impact on the acidity, but a limited effect on gas sorption properties at room temperature. The reversibility of the carboxylic acids to anhydride transformation was also assessed.


Langmuir | 2012

Toward Understanding the Influence of Ethylbenzene in p-Xylene Selectivity of the Porous Titanium Amino Terephthalate MIL-125(Ti): Adsorption Equilibrium and Separation of Xylene Isomers

Mariana A. Moreira; João C. Santos; Alexandre Ferreira; José M. Loureiro; Florence Ragon; Patricia Horcajada; Pascal G. Yot; Christian Serre; Alírio E. Rodrigues

The potential of the porous crystalline titanium dicarboxylate MIL-125(Ti) in powder form was studied for the separation in liquid phase of xylene isomers and ethylbenzene (MIL stands for Materials from Institut Lavoisier). We report here a detailed experimental study consisting of binary and multi-component adsorption equilibrium of xylene isomers in MIL-125(Ti) powder at low (≤0.8 M) and bulk (≥0.8 M) concentrations. A series of multi-component breakthrough experiments was first performed using n-heptane as the eluent at 313 K, and the obtained selectivities were compared, followed by binary breakthrough experiments to determine the adsorption isotherms at 313 K, using n-heptane as the eluent. MIL-125(Ti) is a para-selective material suitable at low concentrations to separate p-xylene from the other xylene isomers. Pulse experiments indicate a separation factor of 1.3 for p-xylene over o-xylene and m-xylene, while breakthrough experiments using a diluted ternary mixture lead to selectivity values of 1.5 and 1.6 for p-xylene over m-xylene and o-xylene, respectively. Introduction of ethylbenzene in the mixture results however in a decrease of the selectivity.


Journal of the American Chemical Society | 2017

Guest Programmable Multistep Spin Crossover in a Porous 2-D Hofmann-Type Material

Michael Murphy; Katrina A. Zenere; Florence Ragon; Peter D. Southon; Cameron J. Kepert; Suzanne M. Neville

The spin crossover (SCO) phenomenon defines an elegant class of switchable materials that can show cooperative transitions when long-range elastic interactions are present. Such materials can show multistepped transitions, targeted both fundamentally and for expanded data storage applications, when antagonistic interactions (i.e., competing ferro- and antiferro-elastic interactions) drive concerted lattice distortions. To this end, a new SCO framework scaffold, [FeII(bztrz)2(PdII(CN)4)]·n(guest) (bztrz = (E)-1-phenyl-N-(1,2,4-triazol-4-yl)methanimine, 1·n(guest)), has been prepared that supports a variety of antagonistic solid state interactions alongside a distinct dual guest pore system. In this 2-D Hofmann-type material we find that inbuilt competition between ferro- and antiferro-elastic interactions provides a SCO behavior that is intrinsically frustrated. This frustration is harnessed by guest exchange to yield a very broad array of spin transition characters in the one framework lattice (one- (1·(H2O,EtOH)), two- (1·3H2O) and three-stepped (1·∼2H2O) transitions and SCO-deactivation (1)). This variety of behaviors illustrates that the degree of elastic frustration can be manipulated by molecular guests, which suggests that the structural features that contribute to multistep switching may be more subtle than previously anticipated.


Inorganic Chemistry | 2016

Investigating the Case of Titanium(IV) Carboxyphenolate Photoactive Coordination Polymers

Hala Assi; Laura C. Pardo Pérez; Georges Mouchaham; Florence Ragon; Maxim A. Nasalevich; Nathalie Guillou; Charlotte Martineau; Hubert Chevreau; Freek Kapteijn; Jorge Gascon; Pierre Fertey; Erik Elkaïm; Christian Serre; Thomas Devic

The reactivity of 2,5-dihydroxyterephthalic acid (H4DOBDC) with titanium(IV) precursors was thoroughly investigated for the synthesis of metal-organic frameworks under solvothermal conditions. Four crystalline phases were isolated whose structures were studied by a combination of single-crystal or powder X-ray diffraction and solid-state NMR. The strong coordination ability of the phenolate moieties was found to favor the formation of isolated TiO6 octahedra bearing solely organic ligands in the resulting structures, unless hydrothermal conditions and precondensed inorganic precursors are used. It is worth noting that these solids strongly absorb visible light, as a consequence of the ligand-to-metal charge transfer (LMCT) arising from Ti-phenolate bonds. Preliminary photocatalytic tests suggest that one compound, namely, MIL-167, presents a higher activity for hydrogen evolution than the titanium carboxylate MIL-125-NH2 but that such an effect cannot be directly correlated with its improved light absorption feature.


CrystEngComm | 2014

Tuning pore size in a zirconium–tricarboxylate metal–organic framework

Weibin Liang; Hubert Chevreau; Florence Ragon; Peter D. Southon; Vanessa K. Peterson; Deanna M. D'Alessandro

The water-stable zirconium–tricarboxylate series of frameworks, [Zr6O4(OH)4(X)6(btc)2]·nH2O, where X = formate (F), acetate (A), or propionate (P), exhibit tunable porosity by virtue of systematic modulation of the chain length of the monocarboxylate ligand X. This modification not only impacts the pore size of the framework, but provides an important avenue for the construction of mixed-linker MOFs.

Collaboration


Dive into the Florence Ragon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Qingyuan Yang

Beijing University of Chemical Technology

View shared research outputs
Top Co-Authors

Avatar

Vincent Guillerm

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Gérard Férey

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Hubert Chevreau

Australian Nuclear Science and Technology Organisation

View shared research outputs
Top Co-Authors

Avatar

Suzanne M. Neville

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge