Florence Schubotz
University of Bremen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Florence Schubotz.
Science | 2014
Steven J. Biller; Florence Schubotz; Sara E. Roggensack; Anne W. Thompson; Roger E. Summons; Sallie W. Chisholm
Carbon Budding in the Ocean Bacterial vesicles are gaining increasing attention for their roles in pathogenesis, but the abundance of these structures and their ecological roles in nonpathogenic contexts have received little notice. Biller et al. (p. 183; see the Perspective by Scanlan) provide evidence that membrane vesicles ∼100 nm in diameter are released by marine cyanobacteria and are a major feature of marine ecosystems. Studies of cultures of Prochlorococcus—the most abundant photoautotroph in the oligotrophic oceans—show that vesicles are continually released by this cyanobacterium and are abundant in the marine environment. These vesicles have properties that change the way we think about genetic and biogeochemical exchange among plankton and the dissolved organic carbon pool in marine ecosystems. The abundant marine cyanobacterium Prochlorococcus sheds membrane vesicles that may contribute to carbon budgets. [Also see Perspective by Scanlan] Many heterotrophic bacteria are known to release extracellular vesicles, facilitating interactions between cells and their environment from a distance. Vesicle production has not been described in photoautotrophs, however, and the prevalence and characteristics of vesicles in natural ecosystems is unknown. Here, we report that cultures of Prochlorococcus, a numerically dominant marine cyanobacterium, continuously release lipid vesicles containing proteins, DNA, and RNA. We also show that vesicles carrying DNA from diverse bacteria are abundant in coastal and open-ocean seawater samples. Prochlorococcus vesicles can support the growth of heterotrophic bacterial cultures, which implicates these structures in marine carbon flux. The ability of vesicles to deliver diverse compounds in discrete packages adds another layer of complexity to the flow of information, energy, and biomolecules in marine microbial communities.
Applied and Environmental Microbiology | 2008
Dariusz Strapoc; Flynn W. Picardal; Courtney Turich; Irene Schaperdoth; Jennifer L. Macalady; Julius S. Lipp; Yu-Shih Lin; Tobias F Ertefai; Florence Schubotz; Kai-Uwe Hinrichs; Maria Mastalerz; Arndt Schimmelmann
ABSTRACT A series of molecular and geochemical studies were performed to study microbial, coal bed methane formation in the eastern Illinois Basin. Results suggest that organic matter is biodegraded to simple molecules, such as H2 and CO2, which fuel methanogenesis and the generation of large coal bed methane reserves. Small-subunit rRNA analysis of both the in situ microbial community and highly purified, methanogenic enrichments indicated that Methanocorpusculum is the dominant genus. Additionally, we characterized this methanogenic microorganism using scanning electron microscopy and distribution of intact polar cell membrane lipids. Phylogenetic studies of coal water samples helped us develop a model of methanogenic biodegradation of macromolecular coal and coal-derived oil by a complex microbial community. Based on enrichments, phylogenetic analyses, and calculated free energies at in situ subsurface conditions for relevant metabolisms (H2-utilizing methanogenesis, acetoclastic methanogenesis, and homoacetogenesis), H2-utilizing methanogenesis appears to be the dominant terminal process of biodegradation of coal organic matter at this location.
Environmental Microbiology | 2009
Florence Schubotz; Stuart G. Wakeham; Julius S. Lipp; Helen F. Fredricks; Kai-Uwe Hinrichs
The stratified water column of the Black Sea produces a vertical succession of redox zones, stimulating microbial activity at the interfaces. Our study of intact polar membrane lipids (IPLs) in suspended particulate matter and sediments highlights their potential as biomarkers for assessing the taxonomic composition of live microbial biomass. Intact polar membrane lipids in oxic waters above the chemocline represent contributions of bacterial and eukaryotic photosynthetic algae, while anoxygenic phototrophic bacteria and sulfate-reducing bacteria comprise a substantial amount of microbial biomass in deeper suboxic and anoxic layers. Intact polar membrane lipids such as betaine lipids and glycosidic ceramides suggest unspecified anaerobic bacteria in the anoxic zone. Distributions of polar head groups and core lipids show planktonic archaea below the oxic zone; methanotrophic archaea are only a minor fraction of archaeal biomass in the anoxic zone, contrasting previous observations based on the apolar derivatives of archaeal lipids. Sediments contain algal and bacterial IPLs from the water column, but transport to the sediment is selective; bacterial and archaeal IPLs are also produced within the sediments. Intact polar membrane lipid distributions in the Black Sea are stratified in accordance with geochemical profiles and provide information on vertical successions of major microbial groups contributing to suspended biomass. This study vastly extends our knowledge of the distribution of complex microbial lipids in the ocean.
Rapid Communications in Mass Spectrometry | 2011
Marcos Yukio Yoshinaga; Matthias Y. Kellermann; Pamela E. Rossel; Florence Schubotz; Julius S. Lipp; Kai-Uwe Hinrichs
Archaea are ubiquitous and abundant microorganisms on Earth that mediate key global biogeochemical cycles. The headgroup attached to the sn-1 position of the glycerol backbone and the ether-linked isoprenoid lipids are among the diagnostic traits that distinguish Archaea from Bacteria and Eukarya. Over the last 30 years, numerous archaeal lipids have been purified and described in pure cultures. Coupled high-performance liquid chromatography (HPLC) ion-trap mass spectrometry (ITMS) now enables the detection and rapid identification of intact polar lipids in relatively small and complex samples, revealing a wide range of archaeal lipids in natural environments. Although major structural groups have been identified, the lack of a systematic evaluation of MS/MS fragmentation patterns has hindered the characterization of several atypical components that are therefore considered as unknowns. Here, we examined mass spectra resulting from lipid analysis of natural microbial communities using HPLC/electrospray ionization (ESI)-ITMS(n), and depicted the systematics in MS(2) fragmentation of intact archaeal lipids. This report will be particularly useful for environmental scientists interested in a rapid and straightforward characterization of intact archaeal membrane lipids.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Frieder Klein; Susan E. Humphris; Weifu Guo; Florence Schubotz; Esther M. Schwarzenbach; William D. Orsi
Significance We provide biogeochemical, micropaleontological, and petrological constraints on a subseafloor habitat at the passive Iberia Margin, where mixing of reduced hydrothermal serpentinization fluids with oxic seawater provided the energy and substrates for metabolic reactions. This mixing zone was inhabited by bacteria and archaea and is comparable to the active Lost City hydrothermal field at the Mid-Atlantic Ridge. Our results highlight the potential of magma-poor passive margins to host Lost City-type hydrothermal systems that support microbial activity in subseafloor environments. Because equivalent systems have likely existed throughout most of Earths history in a wide range of oceanic environments, fluid mixing may have provided the substrates and energy to support a unique subseafloor community of microorganisms over geological timescales. Subseafloor mixing of reduced hydrothermal fluids with seawater is believed to provide the energy and substrates needed to support deep chemolithoautotrophic life in the hydrated oceanic mantle (i.e., serpentinite). However, geosphere-biosphere interactions in serpentinite-hosted subseafloor mixing zones remain poorly constrained. Here we examine fossil microbial communities and fluid mixing processes in the subseafloor of a Cretaceous Lost City-type hydrothermal system at the magma-poor passive Iberia Margin (Ocean Drilling Program Leg 149, Hole 897D). Brucite−calcite mineral assemblages precipitated from mixed fluids ca. 65 m below the Cretaceous paleo-seafloor at temperatures of 31.7 ± 4.3 °C within steep chemical gradients between weathered, carbonate-rich serpentinite breccia and serpentinite. Mixing of oxidized seawater and strongly reducing hydrothermal fluid at moderate temperatures created conditions capable of supporting microbial activity. Dense microbial colonies are fossilized in brucite−calcite veins that are strongly enriched in organic carbon (up to 0.5 wt.% of the total carbon) but depleted in 13C (δ13CTOC = −19.4‰). We detected a combination of bacterial diether lipid biomarkers, archaeol, and archaeal tetraethers analogous to those found in carbonate chimneys at the active Lost City hydrothermal field. The exposure of mantle rocks to seawater during the breakup of Pangaea fueled chemolithoautotrophic microbial communities at the Iberia Margin, possibly before the onset of seafloor spreading. Lost City-type serpentinization systems have been discovered at midocean ridges, in forearc settings of subduction zones, and at continental margins. It appears that, wherever they occur, they can support microbial life, even in deep subseafloor environments.
Environmental Microbiology | 2013
Luciana Raggi; Florence Schubotz; Kai-Uwe Hinrichs; Nicole Dubilier; Jillian M. Petersen
Chemosynthetic life was recently discovered at Chapopote, an asphalt hydrocarbon seep in the southern Gulf of Mexico. Preliminary morphological analyses indicated that one tubeworm and two mussel species colonize Chapopote. Our molecular analyses identified the tubeworm as Escarpia sp., and the mussels as Bathymodiolus heckerae and B. brooksi. Comparative 16S rRNA analysis and FISH showed that all three species harbour intracellular sulfur-oxidizing symbionts highly similar or identical to those found in the same host species from northern Gulf of Mexico (nGoM). The mussels also harbour methane-oxidizing symbionts, and these shared highly similar to identical 16S rRNA sequences to their nGoM conspecifics. We discovered a novel symbiont in B. heckerae, which is closely related to hydrocarbon-degrading bacteria of the genus Cycloclasticus. In B. heckerae, we found key genes for the use of aromatic compounds, and its stable carbon isotope values were consistently higher than B. brooksi, indicating that the novel symbiont might use isotopically heavy aromatic hydrocarbons from the asphalt seep. This discovery is particularly intriguing because until now only methane and reduced sulfur compounds have been shown to power cold-seep chemosynthetic symbioses. The abundant hydrocarbons available at Chapopote would provide these mussel symbioses with a rich source of nutrition.
Geobiology | 2013
Virginia P. Edgcomb; Joan M. Bernhard; David J. Beaudoin; Sara B. Pruss; Paula V. Welander; Florence Schubotz; Sabine Méhay; A. L. Gillespie; Roger E. Summons
Microbialites (stromatolites and thrombolites) are mineralized mat structures formed via the complex interactions of diverse microbial-mat communities. At Highborne Cay, in the Bahamas, the carbonate component of these features is mostly comprised of ooids. These are small, spherical to ellipsoidal grains characterized by concentric layers of calcium carbonate and organic matter and these sand-sized particles are incorporated with the aid of extra-cellular polymeric substances (EPS), into the matrix of laminated stromatolites and clotted thrombolite mats. Here, we present a comparison of the bacterial diversity within oolitic sand samples and bacterial diversity previously reported in thrombolitic and stromatolitic mats of Highborne Cay based on analysis of clone libraries of small subunit ribosomal RNA gene fragments and lipid biomarkers. The 16S-rRNA data indicate that the overall bacterial diversity within ooids is comparable to that found within thrombolites and stromatolites of Highborne Cay, and this significant overlap in taxonomic groups suggests that ooid sands may be a source for much of the bacterial diversity found in the local microbialites. Cyanobacteria were the most diverse taxonomic group detected, followed by Alphaproteobacteria, Gammaproteobacteria, Planctomyces, Deltaproteobacteria, and several other groups also found in mat structures. The distributions of intact polar lipids, the fatty acids derived from them, and bacteriohopanepolyols provide broad general support for the bacterial diversity identified through analysis of nucleic acid clone libraries.
Frontiers in Microbiology | 2015
Florence Schubotz; Lindsay E. Hays; D'Arcy R. Meyer-Dombard; A. L. Gillespie; Everett L. Shock; Roger E. Summons
Streamer biofilm communities (SBC) are often observed within chemosynthetic zones of Yellowstone hot spring outflow channels, where temperatures exceed those conducive to photosynthesis. Nearest the hydrothermal source (75–88°C) SBC comprise thermophilic Archaea and Bacteria, often mixed communities including Desulfurococcales and uncultured Crenarchaeota, as well as Aquificae and Thermus, each carrying diagnostic membrane lipid biomarkers. We tested the hypothesis that SBC can alternate their metabolism between autotrophy and heterotrophy depending on substrate availability. Feeding experiments were performed at two alkaline hot springs in Yellowstone National Park: Octopus Spring and “Bison Pool,” using various 13C-labeled substrates (bicarbonate, formate, acetate, and glucose) to determine the relative uptake of these different carbon sources. Highest 13C uptake, at both sites, was from acetate into almost all bacterial fatty acids, particularly into methyl-branched C15, C17 and C19 fatty acids that are diagnostic for Thermus/Meiothermus, and some Firmicutes as well as into universally common C16:0 and C18:0 fatty acids. 13C-glucose showed a similar, but a 10–30 times lower uptake across most fatty acids. 13C-bicarbonate uptake, signifying the presence of autotrophic communities was only significant at “Bison Pool” and was observed predominantly in non-specific saturated C16, C18, C20, and C22 fatty acids. Incorporation of 13C-formate occurred only at very low rates at “Bison Pool” and was almost undetectable at Octopus Spring, suggesting that formate is not an important carbon source for SBC. 13C-uptake into archaeal lipids occurred predominantly with 13C-acetate, suggesting also that archaeal communities at both springs have primarily heterotrophic carbon assimilation pathways. We hypothesize that these communities are energy-limited and predominantly nurtured by input of exogenous organic material, with only a small fraction being sustained by autotrophic growth.
Journal of Biological Chemistry | 2015
Wendy Itzel Escobedo-Hinojosa; Miguel Ángel Vences-Guzmán; Florence Schubotz; Mario Sandoval-Calderón; Roger E. Summons; Isabel M. López-Lara; Otto Geiger; Christian Sohlenkamp
Background: Ornithine lipids (OLs) are bacteria-specific membrane lipids involved in stress response and can be covalently modified. Results: The methyltransferase Sinac_1600 (OlsG) responsible for OL N-methylation is identified and characterized. Conclusion: OlsG is responsible for a new type of OL modification. Significance: A synthesis pathway for N-methylated OL is revealed. Ornithine lipids (OLs) are phosphorus-free membrane lipids widespread in bacteria but absent from archaea and eukaryotes. In addition to the unmodified OLs, a variety of OL derivatives hydroxylated in different structural positions has been reported. Recently, methylated derivatives of OLs were described in several planctomycetes isolated from a peat bog in Northern Russia, although the gene/enzyme responsible for the N-methylation of OL remained obscure. Here we identify and characterize the OL N-methyltransferase OlsG (Sinac_1600) from the planctomycete Singulisphaera acidiphila. When OlsG is co-expressed with the OL synthase OlsF in Escherichia coli, methylated OL derivatives are formed. An in vitro characterization shows that OlsG is responsible for the 3-fold methylation of the terminal δ-nitrogen of OL. Methylation is dependent on the presence of the detergent Triton X-100 and the methyldonor S-adenosylmethionine.
PLOS ONE | 2016
Tanja Bosak; Florence Schubotz; Ana de Santiago-Torio; Jennifer V. Kuehl; Hans K. Carlson; Nicki Watson; Mirna Daye; Roger E. Summons; Adam P. Arkin; Adam M. Deutschbauer
The prevalence of lipids devoid of phosphorus suggests that the availability of phosphorus limits microbial growth and activity in many anoxic, stratified environments. To better understand the response of anaerobic bacteria to phosphate limitation and starvation, this study combines microscopic and lipid analyses with the measurements of fitness of pooled barcoded transposon mutants of the model sulfate reducing bacterium Desulfovibrio alaskensis G20. Phosphate-limited G20 has lower growth rates and replaces more than 90% of its membrane phospholipids by a mixture of monoglycosyl diacylglycerol (MGDG), glycuronic acid diacylglycerol (GADG) and ornithine lipids, lacks polyphosphate granules, and synthesizes other cellular inclusions. Analyses of pooled and individual mutants reveal the importance of the high-affinity phosphate transport system (the Pst system), PhoR, and glycolipid and ornithine lipid synthases during phosphate limitation. The phosphate-dependent synthesis of MGDG in G20 and the widespread occurrence of the MGDG/GADG synthase among sulfate reducing ∂-Proteobacteria implicate these microbes in the production of abundant MGDG in anaerobic environments where the concentrations of phosphate are lower than 10 μM. Numerous predicted changes in the composition of the cell envelope and systems involved in transport, maintenance of cytoplasmic redox potential, central metabolism and regulatory pathways also suggest an impact of phosphate limitation on the susceptibility of sulfate reducing bacteria to other anthropogenic or environmental stresses.