Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Florence Shin Gee Cheung is active.

Publication


Featured researches published by Florence Shin Gee Cheung.


Human Mutation | 2010

Single nucleotide differences (SNDs) in the dbSNP database may lead to errors in genotyping and haplotyping studies.

Lucia Musumeci; Jonathan W. Arthur; Florence Shin Gee Cheung; Ashraful Hoque; Scott M. Lippman; Juergen K. V. Reichardt

The creation of single nucleotide polymorphism (SNP) databases (such as NCBI dbSNP) has facilitated scientific research in many fields. SNP discovery and detection has improved to the extent that there are over 17 million human reference (rs) SNPs reported to date (Build 129 of dbSNP). SNP databases are unfortunately not always complete and/or accurate. In fact, half of the reported SNPs are still only candidate SNPs and are not validated in a population. We describe the identification of SNDs (single nucleotide differences) in humans, that may contaminate the dbSNP database. These SNDs, reported as real SNPs in the database, do not exist as such, but are merely artifacts due to the presence of a paralogue (highly similar duplicated) sequence in the genome. Using sequencing we showed how SNDs could originate in two paralogous genes and evaluated samples from a population of 100 individuals for the presence/absence of SNPs. Moreover, using bioinformatics, we predicted as many as 8.32% of the biallelic, coding SNPs in the dbSNP database to be SNDs. Our identification of SNDs in the database will allow researchers to not only select truly informative SNPs for association studies, but also aid in determining accurate SNP genotypes and haplotypes. Hum Mutat 31:67–73, 2010.


Expert Review of Anticancer Therapy | 2012

Current progress in using vitamin D and its analogs for cancer prevention and treatment

Florence Shin Gee Cheung; Frank J. Lovicu; Juergen K. V. Reichardt

Vitamin D has long been known for its physiological role in mineral homeostasis through its actions on the intestines, kidneys, parathyroid glands and bone. However, recent observations of antiproliferative, prodifferentiating and antiangiogenic effects elicited by the bioactive form of vitamin D (1,25[OH]2D3) in a broad range of cancers is less well understood. Here, we review the increasing epidemiological and experimental evidence that supports the development of 1,25(OH)2D3 and vitamin D analogs as preventative and therapeutic anticancer agents. Furthermore, this review summarizes the preclinical and clinical studies of vitamin D and its analogs over the past decade, indicating the current problems of dose-limiting toxicity from hypercalcemia and large interpatient variability in pharmacokinetics. A better understanding of how genetic variants influence vitamin D status should not only improve cancer risk predictions, but also promote the development of vitamin D analogs with more specific actions to improve therapeutic outcomes.


Journal of Pharmaceutical Sciences | 2013

The inhibitory effects of the bioactive components isolated from Scutellaria baicalensis on the cellular uptake mediated by the essential solute carrier transporters.

Fei Xu; Zhen Li; Jian Zheng; Florence Shin Gee Cheung; Ting Chan; Ling Zhu; Hongxiang Zhuge; Fanfan Zhou

Solute carrier transporters (SLCs), in particular the organic anion transporters (OATs), OAT polypeptides (OATPs), and organic cation transporters (OCTs/OCTNs), are the important membrane proteins responsible for the cellular influx of various drugs. Baicalein (BA), baicalin (BG), and wogonin (WG) are the three major bioactive components of Scutellaria baicalensis. In this study, we evaluated the inhibitory effects of BA, BG, and WG on the cellular uptake of specific substrates mediated by the essential SLCs in human embryonic kidney-293 cells. Our data demonstrated that BA and WG significantly inhibit the OAT1-, OAT3-, and OATP1B3-mediated uptake; BG effectively reduces the influx of substrates of OAT3, OAT4, OATP1B3, and OATP2B1; WG is a potent inhibitor of OCT3. Our further kinetic analysis derived the IC50 values of these compounds with pronounced inhibitory effects on SLCs, particularly the inhibitions of WG on OAT1 and OCT3 and that of BA and WG on OAT3. Our study comprehensively evaluated the inhibitory effects of three bioactive components of Scutellaria baicalensis on the uptake of specific substrates mediated by the essential SLC transporters, which suggested that precautions will be needed when coadministrating drugs with Scutellaria baicalensis so as to prevent the unfavorable drug-drug/herb interactions in human.


Journal of Biochemical and Molecular Toxicology | 2014

Interaction of the Bioactive Flavonol, Icariin, with the Essential Human Solute Carrier Transporters

Zhen Li; Florence Shin Gee Cheung; Jian Zheng; Ting Chan; Ling Zhu; Fanfan Zhou

Solute carrier transporters (SLCs), in particular the organic anion transporting polypeptides (OATPs) and organic anion/cation transporters (OATs/OCTs), are responsible for the cellular entry of many clinically important drugs in body. They largely influence drug safety and efficacy. Icariin is a flavonol widely present in many herbal preparations, which is used to improve sexual function and prevent osteogenesis. However, precautions are necessary in therapies containing icariin due to its involvement in drug–drug/herb interactions, possibly mediated through competing drug uptake via membrane‐transporter proteins. This study is the first to comprehensively evaluate the interactions between icariin and a range of essential SLCs. Our data demonstrated that icariin can significantly inhibit OATP1B3‐ and OATP2B1‐mediated cellular uptake of specific substrates (IC50 of 3.0 ± 1.3 and 6.4 ± 1.9 μM, respectively). Our study revealed that icariin can potentially compete with coadministrated drugs for particular SLCs, which may impact the therapeutic outcome of regimens.


Molecular Pharmaceutics | 2013

Functional analysis of novel variants in the organic cation/ergothioneine transporter 1 identified in Singapore populations.

Dorothy Su Lin Toh; Florence Shin Gee Cheung; Michael Murray; Tan Kuan Pern; Edmund Jon Deoon Lee; Fanfan Zhou

The human organic cation/ergothioneine transporter 1 (hOCTN1, gene symbol SLC22A4) is responsible for the cellular uptake of substances, such as L-ergothioneine, which is an important antioxidant in mammalian cells. The common-function-altered variant L503F-hOCTN1 has been associated with susceptibility to Crohns disease in certain populations. Previously, we identified eight novel nonsynonymous single-nucleotide polymorphisms (SNPs) in the SLC22A4 gene in the Chinese and Indian populations of Singapore. The present study evaluated the impact of these novel SNPs on hOCTN1 transport function in HEK-293 cells. Transport uptake assays with L-ergothioneine were used to assess the function of the variant transporters. Cell surface biotinylation and Western blot analysis were used to characterize cellular transporter expression. Comparative modeling was used to locate amino acid substitutions in the topology of hOCTN1 in order to account for altered transport function. Transporter activity was markedly impaired in four of the naturally occurring hOCTN1 variants (R63H, R83P, G482D, and I500N). Multiple glycosylated isoforms of hOCTN1 proteins were identified in the plasma membrane and in the whole cell. Either the total cellular or membrane expression of the functionally deficient transporter variants was lower than that of the wild-type hOCTN1. The underlying mechanism involves both impaired transporter-substrate binding affinity and turnover rate. Considered together, several naturally occurring SNPs in the SLC22A4 gene encode variant hOCTN1 transporters that may impact the cellular uptake of L-ergothioneine and other substrates, with the potential to influence the antioxidant capacity of human cells.


Pharmaceutical Biology | 2014

Interactions of the active components of Punica granatum (pomegranate) with the essential renal and hepatic human Solute Carrier transporters.

Zhen Li; Ke Wang; Jian Zheng; Florence Shin Gee Cheung; Ting Chan; Ling Zhu; Fanfan Zhou

Abstract Context: Solute carrier transporters (SLCs) are membrane proteins responsible for cellular influx of various substances including many pharmaceutical agents; therefore, they largely impact on drug disposition and elimination in body. Punica granatum Linnaeus (Lythraceae), pomegranate, is a fruit with antidiabetic potential. Oleanolic acid (OA), ursolic acid (UA), and gallic acid (GA) are the major bioactive components of pomegranate. Co-administration of these compounds with other drugs could result in altered drug pharmacokinetics, possibly due to competing for transporter proteins. Objective: We investigated the interactions of these three compounds with the essential hepatic and renal SLC transporters. Materials and methods: Uptake of radiolabeled transporter model substrates was assessed in HEK293 cells over-expressing SLC transporters including the organic anion transporters (OATs), organic anion transporting polypeptides (OATPs) and organic cation transporters (OCTs), in the presence or absence of 10.0 µM UA, OA, or GA. Their IC50 values on specific SLC transporters were also evaluated using varying concentrations of the particular compound (ranging from 0.10 nM to 80.0 µM). Results: Our results demonstrated UA could significantly inhibit OAT3 and OATP2B1 uptake (IC50: 18.9 ± 8.20 µM and 11.0 ± 5.00 µM, respectively) and GA has a pronounced inhibitory effect on OATP1B3 uptake (IC50: 1.60 ± 0.60 μM). Discussion and conclusion: Our study reports the interactions of OA, UA, and GA with the essential SLC transporters. This information may contribute to elucidating the drug–drug/herb interactions involved with these three compounds and form the basis of therapeutic optimization when drugs are co-administered.


PLOS ONE | 2014

PDZK1 and NHERF1 Regulate the Function of Human Organic Anion Transporting Polypeptide 1A2 (OATP1A2) by Modulating Its Subcellular Trafficking and Stability

Jian Zheng; Ting Chan; Florence Shin Gee Cheung; Ling Zhu; Michael Murray; Fanfan Zhou

The human organic anion transporting polypeptide 1A2 (OATP1A2) is an important membrane protein that mediates the cellular influx of various substances including drugs. Previous studies have shown that PDZ-domain containing proteins, especially PDZK1 and NHERF1, regulate the function of related membrane transporters in other mammalian species. This study investigated the role of PDZK1 and NHERF1 in the regulation of OATP1A2 in an in vitro cell model. Transporter function and protein expression were assessed in OATP1A2-transfected HEK-293 cells that co-expressed PDZK1 or NHERF1. Substrate (estrone-3-sulfate) uptake by OATP1A2 was significantly increased to ∼1.6- (PDZK1) and ∼1.8- (NHERF1) fold of control; this was dependent on the putative PDZ-binding domain within the C-terminus of OATP1A2. The functional increase of OATP1A2 following PDZK1 or NHERF1 over-expression was associated with increased transporter expression at the plasma membrane and in the whole cell, and was reflected by an increase in the apparent maximal velocity of estrone-3-sulfate uptake (Vmax: 138.9±4.1 (PDZK1) and 181.4±16.7 (NHERF1) versus 55.5±3.2 pmol*(µg*4 min)−1 in control; P<0.01). Co-immunoprecipitation analysis indicated that the regulatory actions of PDZK1 and NHERF1 were mediated by direct interaction with OATP1A2 protein. In further experiments PDZK1 and NHERF1 modulated OATP1A2 expression by decreasing its internalization in a clathrin-dependent (but caveolin-independent) manner. Additionally, PDZK1 and NHERF1 enhanced the stability of OATP1A2 protein in HEK-293 cells. The present findings indicated that PDZK1 and NHERF1 regulate the transport function of OATP1A2 by modulating protein internalization via a clathrin-dependent pathway and by enhancing protein stability.


Mechanisms of Ageing and Development | 2017

Sensing of dangerous DNA

Stephan Gasser; Wendy Y.L. Zhang; Nikki Yi Jie Tan; Shubhita Tripathi; Manuel A. Suter; Zhi Huan Chew; Muznah Khatoo; Joanne Ngeow; Florence Shin Gee Cheung

The presence of damaged and microbial DNA can pose a threat to the survival of organisms. Cells express various sensors that recognize specific aspects of such potentially dangerous DNA. Recognition of damaged or microbial DNA by sensors induces cellular processes that are important for DNA repair and inflammation. Here, we review recent evidence that the cellular response to DNA damage and microbial DNA are tightly intertwined. We also discuss insights into the parameters that enable DNA sensors to distinguish damaged and microbial DNA from DNA present in healthy cells.


Molecular Pharmaceutics | 2016

Casein Kinase 2 Is a Novel Regulator of the Human Organic Anion Transporting Polypeptide 1A2 (OATP1A2) Trafficking

Ting Chan; Florence Shin Gee Cheung; Jian Zheng; Xiaoxi Lu; Ling Zhu; Thomas Grewal; Michael Murray; Fanfan Zhou

Human organic anion transporting polypeptides (OATPs) mediate the influx of many important drugs into cells. Casein kinase 2 (CK2) is a critical protein kinase that phosphorylates >300 protein substrates and is dysregulated in a number of disease states. Among the CK2 substrates are several transporters, although whether this includes human OATPs has not been evaluated. The current study was undertaken to evaluate the regulation of human OATP1A2 by CK2. HEK-239T cells in which OATP1A2 was overexpressed were treated with CK2 specific inhibitors or transfected with CK2 specific siRNA, and the activity, expression, and subcellular trafficking of OATP1A2 was evaluated. CK2 inhibition decreased the uptake of the prototypic OATP1A2 substrate estrone-3-sulfate (E3S). Kinetic studies revealed that this was due to a decrease in the maximum velocity (Vmax) of E3S uptake, while the Michaelis constant was unchanged. The cell surface expression, but not the total cellular expression of OATP1A2, was impaired by CK2 inhibition and knockdown of the catalytic α-subunits of CK2. CK2 inhibition decreased the internalization of OATP1A2 via a clathrin-dependent pathway, decreased OATP1A2 recycling, and likely impaired OATP1A2 targeting to the cell surface. Consistent with these findings, CK2 inhibition also disrupted the colocalization of OATP1A2 and Rab GTPase (Rab)4-, Rab8-, and Rab9-positive endosomal and secretory vesicles. Taken together, CK2 has emerged as a novel regulator of the subcellular trafficking and stability of OATP1A2. Because OATP1A2 transports many molecules of physiological and pharmacological importance, the present data may inform drug selection in patients with diseases in which CK2 and OATP1A2 are dysregulated.


Human Mutation | 2015

Single Nucleotide Differences (SNDs) Continue to Contaminate the dbSNP Database With Consequences for Human Genomics and Health

Jonathan W. Arthur; Florence Shin Gee Cheung; Juergen K. V. Reichardt

It has been established that up to 8.3% of the biallelic coding SNPs present in dbSNP are actually artefactual polymorphism‐like errors, previously termed single nucleotide differences, or SNDs. In this study, a previous analysis of SNPs in dbSNP was extended and updated to examine how the incidence of SNDs has changed over an intervening five year period. The incidence of SNDs was found to be lower than in the previous analysis at 2.2% of all biallelic SNPs. There was only a modest reduction in the percentage of SNDs in the original set of biallelic coding SNPs tested. This suggests that the overall reduction in the incidence of SNDs over the intervening 5‐year period is related to an improvement in SNP detection methods and more rigorous curation, rather than efforts to ameliorate the presence of SNDs. We note that SNDs contaminating the dbSNP may lead to erroneous conclusions on human conditions.

Collaboration


Dive into the Florence Shin Gee Cheung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ling Zhu

University of Sydney

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Zheng

Northeast Forestry University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Zhen Li

University of Sydney

View shared research outputs
Top Co-Authors

Avatar

Muznah Khatoo

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Nikki Yi Jie Tan

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Stephan Gasser

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge