Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Florence Tatin is active.

Publication


Featured researches published by Florence Tatin.


Molecular and Cellular Biology | 2003

Actin Can Reorganize into Podosomes in Aortic Endothelial Cells, a Process Controlled by Cdc42 and RhoA

Violaine Moreau; Florence Tatin; Christine Varon; Elisabeth Génot

ABSTRACT Members of the Rho GTPase family play a central role in the orchestration of cytoskeletal rearrangements, which are of prime importance in endothelial cell physiology. To explore their role in this specialized cell type, we used the bacterial toxin cytotoxic necrotizing factor 1 (CNF1) as a Rho GTPase activator. Punctate filamentous actin structures appeared along the ventral plasma membrane of endothelial cells and were identified as the core of podosomes by the distinctive vinculin ring around the F-actin. Rho, Rac, and Cdc42 were all identified as targets of CNF1, but only a constitutively active mutant of Cdc42 could substitute for CNF1 in podosome induction. Accordingly, organization of F-actin in these structures was highly dependent on the main Cdc42 cytoskeletal effector N-Wiskott-Aldrich syndrome protein. Other components of the actin machinery such as Arp2/3 and for the first time WIP also colocalized at these sites. Like CNF1 treatment, sustained Cdc42 activity induced a time-dependent F-actin-vinculin reorganization, prevented cytokinesis, and downregulated Rho activity. Finally, podosomes were also detected on endothelial cells explanted from patients undergoing cardiac surgery. These data provide the first description of podosomes in endothelial cells. The identification of such specialized structures opens up a new field of investigation in terms of endothelium pathophysiology.


Journal of Cell Science | 2006

A signalling cascade involving PKC, Src and Cdc42 regulates podosome assembly in cultured endothelial cells in response to phorbol ester

Florence Tatin; Christine Varon; Elisabeth Génot; Violaine Moreau

The involvement of Src, Cdc42, RhoA and PKC in the regulation of podosome assembly has been identified in various cell models. In endothelial cells, the ectopic expression of constitutively active mutants of Src or Cdc42, but not RhoA, induced the formation of podosomes. Short-term exposure to phorbol-12-myristate-13-acetate (PMA) induced the appearance of podosomes and rosettes after initial disruption of stress fibres. Molecular analysis of PMA-induced podosomes and rosettes revealed that their composition was identical to that of podosomes described in other models. Pharmacological inhibition and siRNA knock-down experiments revealed that both PKCα and PKCδ isotypes were necessary for podosome assembly. However, only constitutively active PKCα could mimic PMA in podosome formation. Src, Cdc42 and RhoA were required downstream of PKCs in this process. Src could be positioned between PKC and Cdc42 in a linear cascade leading to podosome assembly. Using in vitro matrix degradation assays, we demonstrated that PMA-induced podosomes are endowed with proteolytic activities involving MT1-MMP-mediated activation of MMP2. Endothelial podosomes may be involved in subendothelial matrix degradation during endothelium remodelling in pathophysiological processes.


Molecular and Cellular Biology | 2006

Transforming Growth Factor β Induces Rosettes of Podosomes in Primary Aortic Endothelial Cells

Christine Varon; Florence Tatin; Violaine Moreau; Ellen Van Obberghen-Schilling; Samantha Fernandez-Sauze; Edith Reuzeau; IJsbrand M. Kramer; Elisabeth Génot

ABSTRACT Cytoskeletal rearrangements are central to endothelial cell physiology and are controlled by soluble factors, matrix proteins, cell-cell interactions, and mechanical forces. We previously reported that aortic endothelial cells can rearrange their cytoskeletons into complex actin-based structures called podosomes when a constitutively active mutant of Cdc42 is expressed. We now report that transforming growth factor beta (TGF-β) promotes podosome formation in primary aortic endothelial cells. TGF-β-induced podosomes assembled together into large ring- or crescent-shaped structures. Their formation was dependent on protein synthesis and required functional Src, phosphatidylinositide 3-kinase, Cdc42, RhoA, and Smad signaling. MT1-MMP and metalloprotease 9 (MMP9), both upregulated by TGF-β, were detected at sites of podosome formation, and MT1-MMP was found to be involved in the local degradation of extracellular matrix proteins beneath the podosomes and required for the invasion of collagen gels by endothelial cells. We propose that TGF-β plays an important role in endothelial cell physiology by inducing the formation of podosomal structures endowed with metalloprotease activity that may contribute to arterial remodeling.


Circulation Research | 2015

Nonvenous Origin of Dermal Lymphatic Vasculature

Ines Martinez-Corral; Maria H. Ulvmar; Lukas Stanczuk; Florence Tatin; Krishnakumar Kizhatil; Simon W. M. John; Kari Alitalo; Sagrario Ortega; Taija Mäkinen

RATIONALE The formation of the blood vasculature is achieved via 2 fundamentally different mechanisms, de novo formation of vessels from endothelial progenitors (vasculogenesis) and sprouting of vessels from pre-existing ones (angiogenesis). In contrast, mammalian lymphatic vasculature is thought to form exclusively by sprouting from embryonic veins (lymphangiogenesis). Alternative nonvenous sources of lymphatic endothelial cells have been suggested in chicken and Xenopus, but it is unclear whether they exist in mammals. OBJECTIVE We aimed to clarify the origin of the murine dermal lymphatic vasculature. METHODS AND RESULTS We performed lineage tracing experiments and analyzed mutants lacking the Prox1 transcription factor, a master regulator of lymphatic endothelial cell identity, in Tie2 lineage venous-derived lymphatic endothelial cells. We show that, contrary to current dogma, a significant part of the dermal lymphatic vasculature forms independently of sprouting from veins. Although lymphatic vessels of cervical and thoracic skin develop via sprouting from venous-derived lymph sacs, vessels of lumbar and dorsal midline skin form via assembly of non-Tie2-lineage cells into clusters and vessels through a process defined as lymphvasculogenesis. CONCLUSIONS Our results demonstrate a significant contribution of nonvenous-derived cells to the dermal lymphatic vasculature. Demonstration of a previously unknown lymphatic endothelial cell progenitor population will now allow further characterization of their origin, identity, and functions during normal lymphatic development and in pathology, as well as their potential therapeutic use for lymphatic regeneration.


Developmental Cell | 2013

Planar Cell Polarity Protein Celsr1 Regulates Endothelial Adherens Junctions and Directed Cell Rearrangements during Valve Morphogenesis

Florence Tatin; Andrea Taddei; Anne E. Weston; Elaine Fuchs; Danelle Devenport; Fadel Tissir; Taija Mäkinen

Summary Planar cell polarity (PCP) signaling controls tissue morphogenesis by coordinating collective cell behaviors. We show a critical role for the core PCP proteins Celsr1 and Vangl2 in the complex morphogenetic process of intraluminal valve formation in lymphatic vessels. We found that valve-forming endothelial cells undergo elongation, reorientation, and collective migration into the vessel lumen as they initiate valve leaflet formation. During this process, Celsr1 and Vangl2 are recruited from endothelial filopodia to discrete membrane domains at cell-cell contacts. Celsr1- or Vangl2-deficient mice show valve aplasia due to failure of endothelial cells to undergo rearrangements and adopt perpendicular orientation at valve initiation sites. Mechanistically, we show that Celsr1 regulates dynamic cell movements by inhibiting stabilization of VE-cadherin and maturation of adherens junctions. These findings reveal a role for PCP signaling in regulating adherens junctions and directed cell rearrangements during vascular development.


Journal of Cell Biology | 2012

Smooth muscle–endothelial cell communication activates Reelin signaling and regulates lymphatic vessel formation

Sophie Lutter; Sherry Xie; Florence Tatin; Taija Mäkinen

Reelin signaling is activated by communication between the two cell types of the collecting lymphatic vessels and promotes smooth muscle cell recruitment, which is necessary for lymphatic vessel morphogenesis and function.


Journal of Cell Science | 2008

p190B RhoGAP regulates endothelial-cell-associated proteolysis through MT1-MMP and MMP2

Fabien Guegan; Florence Tatin; Thierry Leste-Lasserre; Guillaume Drutel; Elisabeth Génot; Violaine Moreau

The two isoforms of p190 RhoGAP (p190A and p190B) are important regulators of RhoGTPase activity in mammalian cells. Both proteins are ubiquitously expressed, are involved in the same signalling pathways and interact with the same identified binding partners. In search of isoform functional specificity, we knocked down the expression of each p190 protein using siRNA and examined the resulting phenotypic changes in human umbilical vein endothelial cells (HUVECs). We provide evidence that p190B plays a crucial role in the regulation of MT1-MMP expression and cell-surface presentation, as well as subsequent MMP2 activation. p190B is involved in both local extracellular matrix degradation at podosomes and endothelial cell assembly into tube-like structures in Matrigel. In addition, whereas p190B knockdown does not affect podosome formation, p190A knockdown increases the number of cells showing podosome structures in HUVECs. We conclude that the two p190 RhoGAP isoforms play distinct roles in endothelial cells. In addition, our data reveal an unsuspected role for p190B in the expression of the two collaborative proteases MT1-MMP and MMP2, thereby affecting matrix remodelling and angiogenesis.


Biology of the Cell | 2010

Sodium fluoride induces podosome formation in endothelial cells

Florence Tatin; Florence Grise; Edith Reuzeau; Elisabeth Génot; Violaine Moreau

Background information. Fluoride is a well‐known G‐protein activator. Exposure of cultured cells to its derivatives results in actin cytoskeleton remodelling. Podosomes are actin‐based structures endowed with adhesion and matrix‐degradation functions. This study investigates actin cytoskeleton reorganization induced by fluoride in endothelial cells.


JCI insight | 2017

Apelin modulates pathological remodeling of lymphatic endothelium after myocardial infarction

Florence Tatin; Edith Renaud-Gabardos; Anne-Claire Godet; Fransky Hantelys; Françoise Pujol; Florent Morfoisse; Denis Calise; Fanny Viars; Philippe Valet; Bernard Masri; Anne-Catherine Prats; Barbara Garmy-Susini

Lymphatic endothelium serves as a barrier to control fluid balance and immune cell trafficking to maintain tissue homeostasis. Long-term alteration of lymphatic vasculature promotes edema and fibrosis, which is an aggravating factor in the onset of cardiovascular diseases such as myocardial infarction. Apelin is a bioactive peptide that plays a central role in angiogenesis and cardiac contractility. Despite an established role of apelin in lymphangiogenesis, little is known about its function in the cardiac lymphatic endothelium. Here, we show that apelin and its receptor APJ were exclusively expressed on newly formed lymphatic vasculature in a pathological model of myocardial infarction. Using an apelin-knockout mouse model, we identified morphological and functional defects in lymphatic vasculature associated with a proinflammatory status. Surprisingly, apelin deficiency increased the expression of lymphangiogenic growth factors VEGF-C and VEGF-D and exacerbated lymphangiogenesis after myocardial infarction. Conversely, the overexpression of apelin in ischemic heart was sufficient to restore a functional lymphatic vasculature and to reduce matrix remodeling and inflammation. In vitro, the expression of apelin prevented the alteration of cellular junctions in lymphatic endothelial cells induced by hypoxia. In addition, we demonstrated that apelin controls the secretion of the lipid mediator sphingosine-1-phosphate in lymphatic endothelial cells by regulating the level of expression of sphingosine kinase 2 and the transporter SPNS2. Taken together, our results show that apelin plays a key role in lymphatic vessel maturation and stability in pathological settings. Thus, apelin may represent a novel candidate to prevent pathological lymphatic remodeling in diseases.


Archive | 2014

Lymphatic Vascular Morphogenesis

Florence Tatin; Taija Mäkinen

Lymphatic vessels participate in tissue homeostasis and immune surveillance by draining excess fluid and immune cells from tissues to blood circulation. Impaired lymphatic function can lead to tissue swelling, or lymphoedema, and associated complications, such as chronic inflammation and fat accumulation. The critical role of lymphatic vessels in a number of pathological conditions, including tumour metastasis, has led to an interest in identifying signalling pathways regulating lymphatic vessel development and growth. Here, we review the current knowledge on the molecular mechanisms of lymphatic development and how lymphatic vasculature contributes to diseases.

Collaboration


Dive into the Florence Tatin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Edith Reuzeau

French Institute of Health and Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge