Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Florencio Balboa Usabiaga is active.

Publication


Featured researches published by Florencio Balboa Usabiaga.


Multiscale Modeling & Simulation | 2012

Staggered schemes for fluctuating hydrodynamics

Florencio Balboa Usabiaga; John B. Bell; Rafael Delgado-Buscalioni; Aleksandar Donev; Thomas G. Fai; Boyce E. Griffith; Charles S. Peskin

We develop numerical schemes for solving the isothermal compressible and incompressible equations of fluctuating hydrodynamics on a grid with staggered momenta. We develop a second-order accurate spatial discretization of the diffusive, advective, and stochastic fluxes that satisfies a discrete fluctuation-dissipation balance and construct temporal discretizations that are at least second-order accurate in time deterministically and in a weak sense. Specifically, the methods reproduce the correct equilibrium covariances of the fluctuating fields to the third (compressible) and second (incompressible) orders in the time step, as we verify numerically. We apply our techniques to model recent experimental measurements of giant fluctuations in diffusively mixing fluids in a microgravity environment [A. Vailati et al., Nat. Comm., 2 (2011), 290]. Numerical results for the static spectrum of nonequilibrium concentration fluctuations are in excellent agreement between the compressible and incompressible simulati...


Computer Methods in Applied Mechanics and Engineering | 2014

Inertial Coupling Method for particles in an incompressible fluctuating fluid

Florencio Balboa Usabiaga; Rafael Delgado-Buscalioni; Boyce E. Griffith; Aleksandar Donev

Abstract We develop an inertial coupling method for modeling the dynamics of point-like “blob” particles immersed in an incompressible fluid, generalizing previous work for compressible fluids (Balboa Usabiaga et al., 2013 [42]). The coupling consistently includes excess (positive or negative) inertia of the particles relative to the displaced fluid, and accounts for thermal fluctuations in the fluid momentum equation. The coupling between the fluid and the blob is based on a no-slip constraint equating the particle velocity with the local average of the fluid velocity, and conserves momentum and energy. We demonstrate that the formulation obeys a fluctuation–dissipation balance, owing to the non-dissipative nature of the no-slip coupling. We develop a spatio-temporal discretization that preserves, as best as possible, these properties of the continuum formulation. In the spatial discretization, the local averaging and spreading operations are accomplished using compact kernels commonly used in immersed boundary methods. We find that the special properties of these kernels allow the blob to provide an effective model of a particle; specifically, the volume, mass, and hydrodynamic properties of the blob are remarkably grid-independent. We develop a second-order semi-implicit temporal integrator that maintains discrete fluctuation–dissipation balance, and is not limited in stability by viscosity. Furthermore, the temporal scheme requires only constant-coefficient Poisson and Helmholtz linear solvers, enabling a very efficient and simple FFT-based implementation on GPUs. We numerically investigate the performance of the method on several standard test problems. In the deterministic setting, we find the blob to be a remarkably robust approximation to a rigid sphere, at both low and high Reynolds numbers. In the stochastic setting, we study in detail the short and long-time behavior of the velocity autocorrelation function and observe agreement with all of the known behavior for rigid sphere immersed in a fluctuating fluid. The proposed inertial coupling method provides a low-cost coarse-grained (minimal resolution) model of particulate flows over a wide range of time-scales ranging from Brownian to convection-driven motion.


Journal of Chemical Physics | 2013

The Stokes-Einstein relation at moderate Schmidt number

Florencio Balboa Usabiaga; Xiaoyi Xie; Rafael Delgado-Buscalioni; Aleksandar Donev

The Stokes-Einstein relation for the self-diffusion coefficient of a spherical particle suspended in an incompressible fluid is an asymptotic result in the limit of large Schmidt number, that is, when momentum diffuses much faster than the particle. When the Schmidt number is moderate, which happens in most particle methods for hydrodynamics, deviations from the Stokes-Einstein prediction are expected. We study these corrections computationally using a recently developed minimally resolved method for coupling particles to an incompressible fluctuating fluid in both two and three dimensions. We find that for moderate Schmidt numbers the diffusion coefficient is reduced relative to the Stokes-Einstein prediction by an amount inversely proportional to the Schmidt number in both two and three dimensions. We find, however, that the Einstein formula is obeyed at all Schmidt numbers, consistent with linear response theory. The mismatch arises because thermal fluctuations affect the drag coefficient for a particle due to the nonlinear nature of the fluid-particle coupling. The numerical data are in good agreement with an approximate self-consistent theory, which can be used to estimate finite-Schmidt number corrections in a variety of methods. Our results indicate that the corrections to the Stokes-Einstein formula come primarily from the fact that the particle itself diffuses together with the momentum. Our study separates effects coming from corrections to no-slip hydrodynamics from those of finite separation of time scales, allowing for a better understanding of widely observed deviations from the Stokes-Einstein prediction in particle methods such as molecular dynamics.


arXiv: Soft Condensed Matter | 2016

Hydrodynamics of suspensions of passive and active rigid particles: a rigid multiblob approach

Florencio Balboa Usabiaga; Bakytzhan Kallemov; Blaise Delmotte; Amneet Pal Singh Bhalla; Boyce E. Griffith; Aleksandar Donev

Author(s): Usabiaga, FB; Kallemov, B; Delmotte, B; Bhalla, APS; Griffith, BE; Donev, A | Abstract:


Journal of Chemical Physics | 2015

Brownian dynamics of confined rigid bodies.

Steven Delong; Florencio Balboa Usabiaga; Aleksandar Donev

We introduce numerical methods for simulating the diffusive motion of rigid bodies of arbitrary shape immersed in a viscous fluid. We parameterize the orientation of the bodies using normalized quaternions, which are numerically robust, space efficient, and easy to accumulate. We construct a system of overdamped Langevin equations in the quaternion representation that accounts for hydrodynamic effects, preserves the unit-norm constraint on the quaternion, and is time reversible with respect to the Gibbs-Boltzmann distribution at equilibrium. We introduce two schemes for temporal integration of the overdamped Langevin equations of motion, one based on the Fixman midpoint method and the other based on a random finite difference approach, both of which ensure that the correct stochastic drift term is captured in a computationally efficient way. We study several examples of rigid colloidal particles diffusing near a no-slip boundary and demonstrate the importance of the choice of tracking point on the measured translational mean square displacement (MSD). We examine the average short-time as well as the long-time quasi-two-dimensional diffusion coefficient of a rigid particle sedimented near a bottom wall due to gravity. For several particle shapes, we find a choice of tracking point that makes the MSD essentially linear with time, allowing us to estimate the long-time diffusion coefficient efficiently using a Monte Carlo method. However, in general, such a special choice of tracking point does not exist, and numerical techniques for simulating long trajectories, such as the ones we introduce here, are necessary to study diffusion on long time scales.


Journal of Chemical Physics | 2017

Rapid sampling of stochastic displacements in Brownian dynamics simulations

Andrew M. Fiore; Florencio Balboa Usabiaga; Aleksandar Donev; James W. Swan

We present a new method for sampling stochastic displacements in Brownian Dynamics (BD) simulations of colloidal scale particles. The method relies on a new formulation for Ewald summation of the Rotne-Prager-Yamakawa (RPY) tensor, which guarantees that the real-space and wave-space contributions to the tensor are independently symmetric and positive-definite for all possible particle configurations. Brownian displacements are drawn from a superposition of two independent samples: a wave-space (far-field or long-ranged) contribution, computed using techniques from fluctuating hydrodynamics and non-uniform fast Fourier transforms; and a real-space (near-field or short-ranged) correction, computed using a Krylov subspace method. The combined computational complexity of drawing these two independent samples scales linearly with the number of particles. The proposed method circumvents the super-linear scaling exhibited by all known iterative sampling methods applied directly to the RPY tensor that results from the power law growth of the condition number of tensor with the number of particles. For geometrically dense microstructures (fractal dimension equal three), the performance is independent of volume fraction, while for tenuous microstructures (fractal dimension less than three), such as gels and polymer solutions, the performance improves with decreasing volume fraction. This is in stark contrast with other related linear-scaling methods such as the force coupling method and the fluctuating immersed boundary method, for which performance degrades with decreasing volume fraction. Calculations for hard sphere dispersions and colloidal gels are illustrated and used to explore the role of microstructure on performance of the algorithm. In practice, the logarithmic part of the predicted scaling is not observed and the algorithm scales linearly for up to 4×106 particles, obtaining speed ups of over an order of magnitude over existing iterative methods, and making the cost of computing Brownian displacements comparable to the cost of computing deterministic displacements in BD simulations. A high-performance implementation employing non-uniform fast Fourier transforms implemented on graphics processing units and integrated with the software package HOOMD-blue is used for benchmarking.


Journal of Chemical Physics | 2017

Brownian dynamics of confined suspensions of active microrollers

Florencio Balboa Usabiaga; Blaise Delmotte; Aleksandar Donev

We develop efficient numerical methods for performing many-body Brownian dynamics simulations of a recently observed fingering instability in an active suspension of colloidal rollers sedimented above a wall [M. Driscoll, B. Delmotte, M. Youssef, S. Sacanna, A. Donev, and P. Chaikin, Nat. Phys. (2016), preprint arXiv:1609.08673. We present a stochastic Adams-Bashforth integrator for the equations of Brownian dynamics, which has the same cost but is more accurate than the widely used Euler-Maruyama scheme, and use a random finite difference to capture the stochastic drift proportional to the divergence of the configuration-dependent mobility matrix. We generate the Brownian increments using a Krylov method and show that for particles confined to remain in the vicinity of a no-slip wall by gravity or active flows, the number of iterations is independent of the number of particles. Our numerical experiments with active rollers show that the thermal fluctuations set the characteristic height of the colloids above the wall, both in the initial condition and the subsequent evolution dominated by active flows. The characteristic height in turn controls the time scale and wavelength for the development of the fingering instability.


Journal of Statistical Mechanics: Theory and Experiment | 2018

Hydrodynamic fluctuations in quasi-two dimensional diffusion

Raul P. Peláez; Florencio Balboa Usabiaga; Sergio Panzuela; Qiyu Xiao; Rafael Delgado-Buscalioni; Aleksandar Donev

We study diffusion of colloids on a fluid-fluid interface using particle simulations and fluctuating hydrodynamics. Diffusion on a two-dimensional interface with three-dimensional hydrodynamics is known to be anomalous, with the collective diffusion coefficient diverging like the inverse of the wavenumber. This unusual collective effect arises because of the compressibility of the fluid flow in the plane of the interface, and leads to a nonlinear nonlocal convolution term in the diffusion equation for the ensemble-averaged concentration. We extend the previous hydrodynamic theory to account for a species/color labeling of the particles, as necessary to model experiments based on fluorescent techniques. We study the magnitude and dynamics of density and color density fluctuations using a novel Brownian dynamics algorithm, as well as fluctuating hydrodynamics theory and simulation. We find that hydrodynamic coupling between a single tagged particle and collective density fluctuations leads to a reduction of the long-time self-diffusion coefficient, even for an ideal gas of non-interacting particles. Using linearized fluctuating hydrodynamics theory, we show that for diffusion on a fluid-fluid interface, nonequilibrium fluctuations of the total density are small compared to the equilibrium fluctuations, but fluctuations of color density are giant and exhibit a spectrum that decays as the inverse cubed power of the wavenumber. We confirm these predictions through Brownian dynamics simulations of diffusive mixing with two indistinguishable species. We also examine nonequilibrium fluctuations in systems with two-dimensional hydrodynamics, such as thin smectic films in vacuum. We find that nonequilibrium fluctuations are colossal and comparable in magnitude to the mean, and can be accurately modeled using numerical solvers for the nonlinear equations of fluctuating hydrodynamics.


Journal of Chemical Physics | 2014

Brownian dynamics without Green's functions

Steven Delong; Florencio Balboa Usabiaga; Rafael Delgado-Buscalioni; Boyce E. Griffith; Aleksandar Donev


Physical Review E | 2009

Applications of computational geometry to the molecular simulation of interfaces.

Florencio Balboa Usabiaga; Daniel Duque

Collaboration


Dive into the Florencio Balboa Usabiaga's collaboration.

Top Co-Authors

Avatar

Aleksandar Donev

Courant Institute of Mathematical Sciences

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Boyce E. Griffith

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge