Florent Dingli
PSL Research University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Florent Dingli.
Proceedings of the National Academy of Sciences of the United States of America | 2016
Joanna Kowal; Guillaume Arras; Marina Colombo; Mabel Jouve; Jakob Paul Morath; Bjarke Primdal-Bengtson; Florent Dingli; Damarys Loew; Mercedes Tkach; Clotilde Théry
Significance The last decade has seen a rapid expansion of interest in extracellular vesicles (EVs), proposed to mediate cell–cell communication in patho/physiological conditions. Although heterogeneity of EVs has become obvious, as highlighted recently by the International Society for Extracellular Vesicles, the field is lacking specific tools to distinguish EVs of different intracellular origins, and thus probably different functions. Here, thanks to a comprehensive comparison of different types of EVs isolated from a single cell type, we define proteins generically present in EVs, small EV-specific and -excluded ones, and a few specific of endosome-derived exosomes or nonexosomal small EVs. This work will allow proper evaluation of the molecular mechanisms of biogenesis and secretion and the respective functions of subtypes of EVs. Extracellular vesicles (EVs) have become the focus of rising interest because of their numerous functions in physiology and pathology. Cells release heterogeneous vesicles of different sizes and intracellular origins, including small EVs formed inside endosomal compartments (i.e., exosomes) and EVs of various sizes budding from the plasma membrane. Specific markers for the analysis and isolation of different EV populations are missing, imposing important limitations to understanding EV functions. Here, EVs from human dendritic cells were first separated by their sedimentation speed, and then either by their behavior upon upward floatation into iodixanol gradients or by immuno-isolation. Extensive quantitative proteomic analysis allowing comparison of the isolated populations showed that several classically used exosome markers, like major histocompatibility complex, flotillin, and heat-shock 70-kDa proteins, are similarly present in all EVs. We identified proteins specifically enriched in small EVs, and define a set of five protein categories displaying different relative abundance in distinct EV populations. We demonstrate the presence of exosomal and nonexosomal subpopulations within small EVs, and propose their differential separation by immuno-isolation using either CD63, CD81, or CD9. Our work thus provides guidelines to define subtypes of EVs for future functional studies.
Nature Genetics | 2011
Christèle Maison; Delphine Bailly; Danièle Roche; Rocio Montes de Oca; Aline V Probst; Isabelle Vassias; Florent Dingli; Bérengère Lombard; Damarys Loew; Jean-Pierre Quivy; Geneviève Almouzni
HP1 enrichment at pericentric heterochromatin is considered important for centromere function. Although HP1 binding to H3K9me3 can explain its accumulation at pericentric heterochromatin, how it is initially targeted there remains unclear. Here, in mouse cells, we reveal the presence of long nuclear noncoding transcripts corresponding to major satellite repeats at the periphery of pericentric heterochromatin. Furthermore, we find that major transcripts in the forward orientation specifically associate with SUMO-modified HP1 proteins. We identified this modification as SUMO-1 and mapped it in the hinge domain of HP1α. Notably, the hinge domain and its SUMOylation proved critical to promote the initial targeting of HP1α to pericentric domains using de novo localization assays, whereas they are dispensable for maintenance of HP1 domains. We propose that SUMO-HP1, through a specific association with major forward transcript, is guided at the pericentric heterochromatin domain to seed further HP1 localization.
Current Biology | 2011
Maria Almonacid; Séverine Celton-Morizur; Jennifer L. Jakubowski; Florent Dingli; Damarys Loew; Adeline Mayeux; Jun-Song Chen; Kathleen L. Gould; Dawn M. Clifford; Anne Paoletti
In eukaryotes, cytokinesis generally involves an actomyosin ring, the contraction of which promotes daughter cell segregation. Assembly of the contractile ring is tightly controlled in space and time. In the fission yeast, contractile ring components are first organized by the anillin-like protein Mid1 into medial cortical nodes. These nodes then coalesce laterally into a functional contractile ring. Although Mid1 is present at the medial cortex throughout G2, recruitment of contractile ring components to nodes starts only at mitotic onset, indicating that this event is cell-cycle regulated. Polo kinases are key temporal coordinators of mitosis and cytokinesis, and the Polo-like kinase Plo1 is known to activate Mid1 nuclear export at mitotic onset, coupling division plane specification to nuclear position. Here we provide evidence that Plo1 also triggers the recruitment of contractile ring components into medial cortical nodes. Plo1 binds at least two independent sites on Mid1, including a consensus site phosphorylated by Cdc2. Plo1 phosphorylates several residues within the first 100 amino acids of Mid1, which directly interact with the IQGAP Rng2, and influences the timing of myosin II recruitment. Plo1 thereby facilitates contractile ring assembly at mitotic onset.
Nature Communications | 2015
Alessandra Lo Cicero; Cédric Delevoye; Floriane Gilles-Marsens; Damarys Loew; Florent Dingli; Christelle Guéré; Nathalie André; Katell Vié; Guillaume van Niel; Graça Raposo
Cells secrete extracellular vesicles (EVs), exosomes and microvesicles, which transfer proteins, lipids and RNAs to regulate recipient cell functions. Skin pigmentation relies on a tight dialogue between keratinocytes and melanocytes in the epidermis. Here we report that exosomes secreted by keratinocytes enhance melanin synthesis by increasing both the expression and activity of melanosomal proteins. Furthermore, we show that the function of keratinocyte-derived exosomes is phototype-dependent and is modulated by ultraviolet B. In sum, this study uncovers an important physiological function for exosomes in human pigmentation and opens new avenues in our understanding of how pigmentation is regulated by intercellular communication in both healthy and diseased states.
Cell Reports | 2014
Sebastian Müller; Rocio Montes de Oca; Nicolas Lacoste; Florent Dingli; Damarys Loew; Geneviève Almouzni
Centromeres, epigenetically defined by the presence of the histone H3 variant CenH3, are essential for ensuring proper chromosome segregation. In mammals, centromeric CenH3(CENP-A) deposition requires its dedicated chaperone HJURP and occurs during telophase/early G1. We find that the cell-cycle-dependent recruitment of HJURP to centromeres depends on its timely phosphorylation controlled via cyclin-dependent kinases. A nonphosphorylatable HJURP mutant localizes prematurely to centromeres in S and G2 phase. This unregulated targeting causes a premature loading of CenH3(CENP-A) at centromeres, and cell-cycle delays ensue. Once recruited to centromeres, HJURP functions to promote CenH3(CENP-A) deposition by a mechanism involving a unique DNA-binding domain. With our findings, we propose a model wherein (1) the phosphorylation state of HJURP controls its centromeric recruitment in a cell-cycle-dependent manner, and (2) HJURP binding to DNA is a mechanistic determinant in CenH3(CENP-A) loading.
Molecular Biology of the Cell | 2012
Céline Revenu; Florent Ubelmann; Ilse Hurbain; Fatima El-Marjou; Florent Dingli; Damarys Loew; Delphine Delacour; Jules Gilet; Edith Brot-Laroche; Francisco Rivero; Daniel Louvard; Sylvie Robine
The bundled architecture of actin filaments is not needed for intestinal microvillar morphogenesis, as shown in knockout mice devoid of microvillar actin-bundling proteins. This architecture is essential for the apical anchorage of digestive proteins, probably via the recruitment of key players in apical retention, such as myosin-1a, and, as a result, for intestinal physiology.
Cell Reports | 2015
Guillaume van Niel; Ptissam Bergam; Aurelie Di Cicco; Ilse Hurbain; Alessandra Lo Cicero; Florent Dingli; Roberta Palmulli; Cécile Fort; Marie Potier; Leon J. Schurgers; Damarys Loew; Daniel Lévy; Graça Raposo
Accumulation of toxic amyloid oligomers is a key feature in the pathogenesis of amyloid-related diseases. Formation of mature amyloid fibrils is one defense mechanism to neutralize toxic prefibrillar oligomers. This mechanism is notably influenced by apolipoprotein E variants. Cells that produce mature amyloid fibrils to serve physiological functions must exploit specific mechanisms to avoid potential accumulation of toxic species. Pigment cells have tuned their endosomes to maximize the formation of functional amyloid from the protein PMEL. Here, we show that ApoE is associated with intraluminal vesicles (ILV) within endosomes and remain associated with ILVs when they are secreted as exosomes. ApoE functions in the ESCRT-independent sorting mechanism of PMEL onto ILVs and regulates the endosomal formation of PMEL amyloid fibrils in vitro and in vivo. This process secures the physiological formation of amyloid fibrils by exploiting ILVs as amyloid nucleating platforms.
Nature Communications | 2015
Frédérique Rau; Jeanne Lainé; Laetitita Ramanoudjame; Arnaud Ferry; Ludovic Arandel; Olivier Delalande; Arnaud Jollet; Florent Dingli; Kuang-Yung Lee; Cécile Peccate; Stéphanie Lorain; Edor Kabashi; Takis Athanasopoulos; Taeyoung Koo; Damarys Loew; Maurice S. Swanson; Elisabeth Le Rumeur; George Dickson; Valérie Allamand; Joëlle Marie; Denis Furling
Myotonic Dystrophy type 1 (DM1) is a dominant neuromuscular disease caused by nuclear-retained RNAs containing expanded CUG repeats. These toxic RNAs alter the activities of RNA splicing factors resulting in alternative splicing misregulation and muscular dysfunction. Here we show that the abnormal splicing of DMD exon 78 found in dystrophic muscles of DM1 patients is due to the functional loss of MBNL1 and leads to the re-expression of an embryonic dystrophin in place of the adult isoform. Forced expression of embryonic dystrophin in zebrafish using an exon-skipping approach severely impairs the mobility and muscle architecture. Moreover, reproducing Dmd exon 78 missplicing switch in mice induces muscle fibre remodelling and ultrastructural abnormalities including ringed fibres, sarcoplasmic masses or Z-band disorganization, which are characteristic features of dystrophic DM1 skeletal muscles. Thus, we propose that splicing misregulation of DMD exon 78 compromises muscle fibre maintenance and contributes to the progressive dystrophic process in DM1.
Current Biology | 2015
Dora Sabino; Delphine Gogendeau; Davide Gambarotto; Maddalena Nano; Carole Pennetier; Florent Dingli; Guillaume Arras; Damarys Loew; Renata Basto
Summary Centrosome amplification has severe consequences during development and is thought to contribute to a variety of diseases such as cancer and microcephaly. However, the adverse effects of centrosome amplification in epithelia are still not known. Here, we investigate the consequences of centrosome amplification in the Drosophila wing disc epithelium. We found that epithelial cells exhibit mechanisms of clustering but also inactivation of extra centrosomes. Importantly, these mechanisms are not fully efficient, and both aneuploidy and cell death can be detected. Epithelial cells with extra centrosomes generate tumors when transplanted into WT hosts and inhibition of cell death results in tissue over-growth and disorganization. Using SILAC-fly, we found that Moesin, a FERM domain protein, is specifically upregulated in wing discs with extra centrosomes. Moesin localizes to the centrosomes and mitotic spindle during mitosis, and we show that Moesin upregulation influences extra-centrosome behavior and robust bipolar spindle formation. This study provides a mechanistic explanation for the increased aneuploidy and transformation potential primed by centrosome amplification in epithelial tissues.
Cancer Research | 2013
Alex Cazes; Caroline Louis-Brennetot; Pierre Mazot; Florent Dingli; Bérangère Lombard; Valentina Boeva; Romain Daveau; Julie Cappo; Valérie Combaret; Gudrun Schleiermacher; Stéphanie Jouannet; Sandrine Ferrand; Gaëlle Pierron; Emmanuel Barillot; Damarys Loew; Marc Vigny; Olivier Delattre; Isabelle Janoueix-Lerosey
Activating mutations of the ALK gene have been identified in sporadic and familial cases of neuroblastoma (NB), a cancer of the peripheral nervous system, and are thought to be the primary mechanism of oncogenic activation of this receptor in this pediatric neoplasm. To address the possibility that ALK activation may occur through genomic rearrangements as detected in other cancers, we first took advantage of high-resolution array-comparative genomic hybridization to search for ALK rearrangements in NB samples. Using complementary experiments by capture/paired-end sequencing and FISH experiments, various types of rearrangements were fully characterized, including partial gains or amplifications, in several NB cell lines and primary tumors. In the CLB-Bar cell line, we described a genomic rearrangement associated with an amplification of the ALK locus, leading to the expression of a 170 kDa protein lacking part of the extracellular domain encoded by exons 4 to 11, named ALK(Δ4-11). Analysis of genomic DNA from the tumor at diagnosis and relapse revealed that the ALK gene was amplified at diagnosis but that the rearranged ALK allele was observed at the relapse stage only, suggesting that it may be implicated in tumor aggressiveness. Consistently, oncogenic and tumorigenic properties of the ALK(Δ4-11) variant were shown after stable expression in NIH3T3 cells. Moreover, we documented an increased constitutive kinase activity of this variant, as well as an impaired maturation and retention into intracellular compartments. These results indicate that genomic rearrangements constitute an alternative mechanism to ALK point mutations resulting in receptor activation.