Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Florent E. Angly is active.

Publication


Featured researches published by Florent E. Angly.


PLOS Biology | 2006

The Marine Viromes of Four Oceanic Regions

Florent E. Angly; Ben Felts; Mya Breitbart; Peter Salamon; Robert Edwards; Craig H. Carlson; Amy M. Chan; Matthew Haynes; Scott Kelley; Hong-Hong Liu; Joseph M. Mahaffy; Jennifer Mueller; Jim Nulton; Robert Olson; Rachel Parsons; Steve Rayhawk; Curtis A. Suttle; Forest Rohwer

Viruses are the most common biological entities in the marine environment. There has not been a global survey of these viruses, and consequently, it is not known what types of viruses are in Earths oceans or how they are distributed. Metagenomic analyses of 184 viral assemblages collected over a decade and representing 68 sites in four major oceanic regions showed that most of the viral sequences were not similar to those in the current databases. There was a distinct “marine-ness” quality to the viral assemblages. Global diversity was very high, presumably several hundred thousand of species, and regional richness varied on a North-South latitudinal gradient. The marine regions had different assemblages of viruses. Cyanophages and a newly discovered clade of single-stranded DNA phages dominated the Sargasso Sea sample, whereas prophage-like sequences were most common in the Arctic. However most viral species were found to be widespread. With a majority of shared species between oceanic regions, most of the differences between viral assemblages seemed to be explained by variation in the occurrence of the most common viral species and not by exclusion of different viral genomes. These results support the idea that viruses are widely dispersed and that local environmental conditions enrich for certain viral types through selective pressure.


Nature | 2008

Functional metagenomic profiling of nine biomes

Elizabeth A. Dinsdale; Robert Edwards; Dana Hall; Florent E. Angly; Mya Breitbart; Mike Furlan; Christelle Desnues; Matthew Haynes; Linlin Li; Lauren D. McDaniel; Mary Ann Moran; Karen E. Nelson; Christina Nilsson; Robert Olson; John H. Paul; Beltran Rodriguez Brito; Yijun Ruan; Brandon K. Swan; Rick Stevens; David L. Valentine; Rebecca Vega Thurber; Linda Wegley; Bryan A. White; Forest Rohwer

Microbial activities shape the biogeochemistry of the planet and macroorganism health. Determining the metabolic processes performed by microbes is important both for understanding and for manipulating ecosystems (for example, disruption of key processes that lead to disease, conservation of environmental services, and so on). Describing microbial function is hampered by the inability to culture most microbes and by high levels of genomic plasticity. Metagenomic approaches analyse microbial communities to determine the metabolic processes that are important for growth and survival in any given environment. Here we conduct a metagenomic comparison of almost 15 million sequences from 45 distinct microbiomes and, for the first time, 42 distinct viromes and show that there are strongly discriminatory metabolic profiles across environments. Most of the functional diversity was maintained in all of the communities, but the relative occurrence of metabolisms varied, and the differences between metagenomes predicted the biogeochemical conditions of each environment. The magnitude of the microbial metabolic capabilities encoded by the viromes was extensive, suggesting that they serve as a repository for storing and sharing genes among their microbial hosts and influence global evolutionary and metabolic processes.


Nature | 2010

Viruses in the faecal microbiota of monozygotic twins and their mothers

Alejandro Reyes; Matthew Haynes; Nicole Hanson; Florent E. Angly; Andrew C. Heath; Forest Rohwer; Jeffrey I. Gordon

Viral diversity and life cycles are poorly understood in the human gut and other body habitats. Phages and their encoded functions may provide informative signatures of a human microbiota and of microbial community responses to various disturbances, and may indicate whether community health or dysfunction is manifest after apparent recovery from a disease or therapeutic intervention. Here we report sequencing of the viromes (metagenomes) of virus-like particles isolated from faecal samples collected from healthy adult female monozygotic twins and their mothers at three time points over a one-year period. We compared these data sets with data sets of sequenced bacterial 16S ribosomal RNA genes and total-faecal-community DNA. Co-twins and their mothers share a significantly greater degree of similarity in their faecal bacterial communities than do unrelated individuals. In contrast, viromes are unique to individuals regardless of their degree of genetic relatedness. Despite remarkable interpersonal variations in viromes and their encoded functions, intrapersonal diversity is very low, with >95% of virotypes retained over the period surveyed, and with viromes dominated by a few temperate phages that exhibit remarkable genetic stability. These results indicate that a predatory viral–microbial dynamic, manifest in a number of other characterized environmental ecosystems, is notably absent in the very distal intestine.


Environmental Microbiology | 2009

Metagenomic analysis of stressed coral holobionts.

Rebecca Vega Thurber; Dana Willner-Hall; Beltran Rodriguez-Mueller; Christelle Desnues; Robert Edwards; Florent E. Angly; Elizabeth A. Dinsdale; Linda Wegley Kelly; Forest Rohwer

The coral holobiont is the community of metazoans, protists and microbes associated with scleractinian corals. Disruptions in these associations have been correlated with coral disease, but little is known about the series of events involved in the shift from mutualism to pathogenesis. To evaluate structural and functional changes in coral microbial communities, Porites compressa was exposed to four stressors: increased temperature, elevated nutrients, dissolved organic carbon loading and reduced pH. Microbial metagenomic samples were collected and pyrosequenced. Functional gene analysis demonstrated that stressors increased the abundance of microbial genes involved in virulence, stress resistance, sulfur and nitrogen metabolism, motility and chemotaxis, fatty acid and lipid utilization, and secondary metabolism. Relative changes in taxonomy also demonstrated that coral-associated microbiota (Archaea, Bacteria, protists) shifted from a healthy-associated coral community (e.g. Cyanobacteria, Proteobacteria and the zooxanthellae Symbiodinium) to a community (e.g. Bacteriodetes, Fusobacteria and Fungi) of microbes often found on diseased corals. Additionally, low-abundance Vibrio spp. were found to significantly alter microbiome metabolism, suggesting that the contribution of a just a few members of a community can profoundly shift the health status of the coral holobiont.


PLOS ONE | 2009

Metagenomic Analysis of Respiratory Tract DNA Viral Communities in Cystic Fibrosis and Non-Cystic Fibrosis Individuals

Dana Willner; Mike Furlan; Matthew Haynes; Robert Schmieder; Florent E. Angly; Joás L. da Silva; Sassan Tammadoni; Bahador Nosrat; Douglas Conrad; Forest Rohwer

The human respiratory tract is constantly exposed to a wide variety of viruses, microbes and inorganic particulates from environmental air, water and food. Physical characteristics of inhaled particles and airway mucosal immunity determine which viruses and microbes will persist in the airways. Here we present the first metagenomic study of DNA viral communities in the airways of diseased and non-diseased individuals. We obtained sequences from sputum DNA viral communities in 5 individuals with cystic fibrosis (CF) and 5 individuals without the disease. Overall, diversity of viruses in the airways was low, with an average richness of 175 distinct viral genotypes. The majority of viral diversity was uncharacterized. CF phage communities were highly similar to each other, whereas Non-CF individuals had more distinct phage communities, which may reflect organisms in inhaled air. CF eukaryotic viral communities were dominated by a few viruses, including human herpesviruses and retroviruses. Functional metagenomics showed that all Non-CF viromes were similar, and that CF viromes were enriched in aromatic amino acid metabolism. The CF metagenomes occupied two different metabolic states, probably reflecting different disease states. There was one outlying CF virome which was characterized by an over-representation of Guanosine-5′-triphosphate,3′-diphosphate pyrophosphatase, an enzyme involved in the bacterial stringent response. Unique environments like the CF airway can drive functional adaptations, leading to shifts in metabolic profiles. These results have important clinical implications for CF, indicating that therapeutic measures may be more effective if used to change the respiratory environment, as opposed to shifting the taxonomic composition of resident microbiota.


The ISME Journal | 2010

Viral and microbial community dynamics in four aquatic environments.

Beltran Rodriguez-Brito; Linlin Li; Linda Wegley; Mike Furlan; Florent E. Angly; Mya Breitbart; John Buchanan; Christelle Desnues; Elizabeth A. Dinsdale; Robert Edwards; Ben Felts; Matthew Haynes; Hong Liu; David A. Lipson; Joseph M. Mahaffy; Anna Belen Martin-Cuadrado; Alex Mira; Jim Nulton; Lejla Pašić; Steve Rayhawk; Jennifer Rodriguez-Mueller; Francisco Rodriguez-Valera; Peter Salamon; Shailaja Srinagesh; Tron Frede Thingstad; Tuong Tran; Rebecca Vega Thurber; Dana Willner; Merry Youle; Forest Rohwer

The species composition and metabolic potential of microbial and viral communities are predictable and stable for most ecosystems. This apparent stability contradicts theoretical models as well as the viral–microbial dynamics observed in simple ecosystems, both of which show Kill-the-Winner behavior causing cycling of the dominant taxa. Microbial and viral metagenomes were obtained from four human-controlled aquatic environments at various time points separated by one day to >1 year. These environments were maintained within narrow geochemical bounds and had characteristic species composition and metabolic potentials at all time points. However, underlying this stability were rapid changes at the fine-grained level of viral genotypes and microbial strains. These results suggest a model wherein functionally redundant microbial and viral taxa are cycling at the level of viral genotypes and virus-sensitive microbial strains. Microbial taxa, viral taxa, and metabolic function persist over time in stable ecosystems and both communities fluctuate in a Kill-the-Winner manner at the level of viral genotypes and microbial strains.


Nature | 2008

Biodiversity and biogeography of phages in modern stromatolites and thrombolites

Christelle Desnues; Beltran Rodriguez-Brito; Steve Rayhawk; Scott T. Kelley; Tuong Tran; Matthew Haynes; Hong Liu; Mike Furlan; Linda Wegley; Betty Chau; Yijun Ruan; Dana Hall; Florent E. Angly; Robert Edwards; Linlin Li; Rebecca Vega Thurber; R. Pamela Reid; Janet L. Siefert; Valeria Souza; David L. Valentine; Brandon K. Swan; Mya Breitbart; Forest Rohwer

Viruses, and more particularly phages (viruses that infect bacteria), represent one of the most abundant living entities in aquatic and terrestrial environments. The biogeography of phages has only recently been investigated and so far reveals a cosmopolitan distribution of phage genetic material (or genotypes). Here we address this cosmopolitan distribution through the analysis of phage communities in modern microbialites, the living representatives of one of the most ancient life forms on Earth. On the basis of a comparative metagenomic analysis of viral communities associated with marine (Highborne Cay, Bahamas) and freshwater (Pozas Azules II and Rio Mesquites, Mexico) microbialites, we show that some phage genotypes are geographically restricted. The high percentage of unknown sequences recovered from the three metagenomes (>97%), the low percentage similarities with sequences from other environmental viral (n = 42) and microbial (n = 36) metagenomes, and the absence of viral genotypes shared among microbialites indicate that viruses are genetically unique in these environments. Identifiable sequences in the Highborne Cay metagenome were dominated by single-stranded DNA microphages that were not detected in any other samples examined, including sea water, fresh water, sediment, terrestrial, extreme, metazoan-associated and marine microbial mats. Finally, a marine signature was present in the phage community of the Pozas Azules II microbialites, even though this environment has not been in contact with the ocean for tens of millions of years. Taken together, these results prove that viruses in modern microbialites display biogeographical variability and suggest that they may be derived from an ancient community.


Research in Microbiology | 2008

Viral diversity and dynamics in an infant gut

Mya Breitbart; Matthew Haynes; Scott T. Kelley; Florent E. Angly; Robert Edwards; Ben Felts; Joseph M. Mahaffy; Jennifer Mueller; James Nulton; Steve Rayhawk; Beltran Rodriguez-Brito; Peter Salamon; Forest Rohwer

Metagenomic sequencing of DNA viruses from the feces of a healthy week-old infant revealed a viral community with extremely low diversity. The identifiable sequences were dominated by phages, which likely influence the diversity and abundance of co-occurring microbes. The most abundant fecal viral sequences did not originate from breast milk or formula, suggesting a non-dietary initial source of viruses. Certain sequences were stable in the infants gut over the first 3 months of life, but microarray experiments demonstrated that the overall viral community composition changed dramatically between 1 and 2 weeks of age.


PLOS Computational Biology | 2009

The GAAS Metagenomic Tool and Its Estimations of Viral and Microbial Average Genome Size in Four Major Biomes

Florent E. Angly; Dana Willner; Alejandra Prieto-Davó; Robert Edwards; Robert Schmieder; Rebecca Vega-Thurber; Dionysios A. Antonopoulos; Katie L. Barott; Matthew T. Cottrell; Christelle Desnues; Elizabeth A. Dinsdale; Mike Furlan; Matthew Haynes; Matthew R. Henn; Yongfei Hu; David L. Kirchman; Tracey McDole; John D. McPherson; Folker Meyer; R. Michael Miller; Egbert Mundt; Robert K. Naviaux; Beltran Rodriguez-Mueller; Rick Stevens; Linda Wegley; Lixin Zhang; Baoli Zhu; Forest Rohwer

Metagenomic studies characterize both the composition and diversity of uncultured viral and microbial communities. BLAST-based comparisons have typically been used for such analyses; however, sampling biases, high percentages of unknown sequences, and the use of arbitrary thresholds to find significant similarities can decrease the accuracy and validity of estimates. Here, we present Genome relative Abundance and Average Size (GAAS), a complete software package that provides improved estimates of community composition and average genome length for metagenomes in both textual and graphical formats. GAAS implements a novel methodology to control for sampling bias via length normalization, to adjust for multiple BLAST similarities by similarity weighting, and to select significant similarities using relative alignment lengths. In benchmark tests, the GAAS method was robust to both high percentages of unknown sequences and to variations in metagenomic sequence read lengths. Re-analysis of the Sargasso Sea virome using GAAS indicated that standard methodologies for metagenomic analysis may dramatically underestimate the abundance and importance of organisms with small genomes in environmental systems. Using GAAS, we conducted a meta-analysis of microbial and viral average genome lengths in over 150 metagenomes from four biomes to determine whether genome lengths vary consistently between and within biomes, and between microbial and viral communities from the same environment. Significant differences between biomes and within aquatic sub-biomes (oceans, hypersaline systems, freshwater, and microbialites) suggested that average genome length is a fundamental property of environments driven by factors at the sub-biome level. The behavior of paired viral and microbial metagenomes from the same environment indicated that microbial and viral average genome sizes are independent of each other, but indicative of community responses to stressors and environmental conditions.


PLOS ONE | 2008

Comparative Metagenomics Reveals Host Specific Metavirulomes and Horizontal Gene Transfer Elements in the Chicken Cecum Microbiome

Ani Qu; Melissa K. Wilson; Bibiana F. Law; James R. Theoret; Lynn A. Joens; Michael E. Konkel; Florent E. Angly; Elizabeth A. Dinsdale; Robert Edwards; Karen E. Nelson; Bryan A. White

Background The complex microbiome of the ceca of chickens plays an important role in nutrient utilization, growth and well-being of these animals. Since we have a very limited understanding of the capabilities of most species present in the cecum, we investigated the role of the microbiome by comparative analyses of both the microbial community structure and functional gene content using random sample pyrosequencing. The overall goal of this study was to characterize the chicken cecal microbiome using a pathogen-free chicken and one that had been challenged with Campylobacter jejuni. Methodology/Principal Findings Comparative metagenomic pyrosequencing was used to generate 55,364,266 bases of random sampled pyrosequence data from two chicken cecal samples. SSU rDNA gene tags and environmental gene tags (EGTs) were identified using SEED subsystems-based annotations. The distribution of phylotypes and EGTs detected within each cecal sample were primarily from the Firmicutes, Bacteroidetes and Proteobacteria, consistent with previous SSU rDNA libraries of the chicken cecum. Carbohydrate metabolism and virulence genes are major components of the EGT content of both of these microbiomes. A comparison of the twelve major pathways in the SEED Virulence Subsystem (metavirulome) represented in the chicken cecum, mouse cecum and human fecal microbiomes showed that the metavirulomes differed between these microbiomes and the metavirulomes clustered by host environment. The chicken cecum microbiomes had the broadest range of EGTs within the SEED Conjugative Transposon Subsystem, however the mouse cecum microbiomes showed a greater abundance of EGTs in this subsystem. Gene assemblies (32 contigs) from one microbiome sample were predominately from the Bacteroidetes, and seven of these showed sequence similarity to transposases, whereas the remaining sequences were most similar to those from catabolic gene families. Conclusion/Significance This analysis has demonstrated that mobile DNA elements are a major functional component of cecal microbiomes, thus contributing to horizontal gene transfer and functional microbiome evolution. Moreover, the metavirulomes of these microbiomes appear to associate by host environment. These data have implications for defining core and variable microbiome content in a host species. Furthermore, this suggests that the evolution of host specific metavirulomes is a contributing factor in disease resistance to zoonotic pathogens.

Collaboration


Dive into the Florent E. Angly's collaboration.

Top Co-Authors

Avatar

Forest Rohwer

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Matthew Haynes

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Mya Breitbart

University of South Florida

View shared research outputs
Top Co-Authors

Avatar

Robert Edwards

San Diego State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mike Furlan

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Gene W. Tyson

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Christelle Desnues

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Dana Willner

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge