Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Florent Perronnin is active.

Publication


Featured researches published by Florent Perronnin.


european conference on computer vision | 2010

Improving the fisher kernel for large-scale image classification

Florent Perronnin; Jorge Sánchez; Thomas Mensink

The Fisher kernel (FK) is a generic framework which combines the benefits of generative and discriminative approaches. In the context of image classification the FK was shown to extend the popular bag-of-visual-words (BOV) by going beyond count statistics. However, in practice, this enriched representation has not yet shown its superiority over the BOV. In the first part we show that with several well-motivated modifications over the original framework we can boost the accuracy of the FK. On PASCAL VOC 2007 we increase the Average Precision (AP) from 47.9% to 58.3%. Similarly, we demonstrate state-of-the-art accuracy on CalTech 256. A major advantage is that these results are obtained using only SIFT descriptors and costless linear classifiers. Equipped with this representation, we can now explore image classification on a larger scale. In the second part, as an application, we compare two abundant resources of labeled images to learn classifiers: ImageNet and Flickr groups. In an evaluation involving hundreds of thousands of training images we show that classifiers learned on Flickr groups perform surprisingly well (although they were not intended for this purpose) and that they can complement classifiers learned on more carefully annotated datasets.


computer vision and pattern recognition | 2007

Fisher Kernels on Visual Vocabularies for Image Categorization

Florent Perronnin; Christopher R. Dance

Within the field of pattern classification, the Fisher kernel is a powerful framework which combines the strengths of generative and discriminative approaches. The idea is to characterize a signal with a gradient vector derived from a generative probability model and to subsequently feed this representation to a discriminative classifier. We propose to apply this framework to image categorization where the input signals are images and where the underlying generative model is a visual vocabulary: a Gaussian mixture model which approximates the distribution of low-level features in images. We show that Fisher kernels can actually be understood as an extension of the popular bag-of-visterms. Our approach demonstrates excellent performance on two challenging databases: an in-house database of 19 object/scene categories and the recently released VOC 2006 database. It is also very practical: it has low computational needs both at training and test time and vocabularies trained on one set of categories can be applied to another set without any significant loss in performance.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2012

Aggregating Local Image Descriptors into Compact Codes

Hervé Jégou; Florent Perronnin; Matthijs Douze; Jorge Sánchez; Patrick Pérez; Cordelia Schmid

This paper addresses the problem of large-scale image search. Three constraints have to be taken into account: search accuracy, efficiency, and memory usage. We first present and evaluate different ways of aggregating local image descriptors into a vector and show that the Fisher kernel achieves better performance than the reference bag-of-visual words approach for any given vector dimension. We then jointly optimize dimensionality reduction and indexing in order to obtain a precise vector comparison as well as a compact representation. The evaluation shows that the image representation can be reduced to a few dozen bytes while preserving high accuracy. Searching a 100 million image data set takes about 250 ms on one processor core.


International Journal of Computer Vision | 2013

Image Classification with the Fisher Vector: Theory and Practice

Jorge Sánchez; Florent Perronnin; Thomas Mensink; Jakob J. Verbeek

A standard approach to describe an image for classification and retrieval purposes is to extract a set of local patch descriptors, encode them into a high dimensional vector and pool them into an image-level signature. The most common patch encoding strategy consists in quantizing the local descriptors into a finite set of prototypical elements. This leads to the popular Bag-of-Visual words representation. In this work, we propose to use the Fisher Kernel framework as an alternative patch encoding strategy: we describe patches by their deviation from an “universal” generative Gaussian mixture model. This representation, which we call Fisher vector has many advantages: it is efficient to compute, it leads to excellent results even with efficient linear classifiers, and it can be compressed with a minimal loss of accuracy using product quantization. We report experimental results on five standard datasets—PASCAL VOC 2007, Caltech 256, SUN 397, ILSVRC 2010 and ImageNet10K—with up to 9M images and 10K classes, showing that the FV framework is a state-of-the-art patch encoding technique.


computer vision and pattern recognition | 2010

Large-scale image retrieval with compressed Fisher vectors

Florent Perronnin; Yan Liu; Jorge Sánchez; Herve Poirier

The problem of large-scale image search has been traditionally addressed with the bag-of-visual-words (BOV). In this article, we propose to use as an alternative the Fisher kernel framework. We first show why the Fisher representation is well-suited to the retrieval problem: it describes an image by what makes it different from other images. One drawback of the Fisher vector is that it is high-dimensional and, as opposed to the BOV, it is dense. The resulting memory and computational costs do not make Fisher vectors directly amenable to large-scale retrieval. Therefore, we compress Fisher vectors to reduce their memory footprint and speed-up the retrieval. We compare three binarization approaches: a simple approach devised for this representation and two standard compression techniques. We show on two publicly available datasets that compressed Fisher vectors perform very well using as little as a few hundreds of bits per image, and significantly better than a very recent compressed BOV approach.


european conference on computer vision | 2006

Adapted vocabularies for generic visual categorization

Florent Perronnin; Christopher R. Dance; Gabriela Csurka; Marco Bressan

Several state-of-the-art Generic Visual Categorization (GVC) systems are built around a vocabulary of visual terms and characterize images with one histogram of visual word counts. We propose a novel and practical approach to GVC based on a universal vocabulary, which describes the content of all the considered classes of images, and class vocabularies obtained through the adaptation of the universal vocabulary using class-specific data. An image is characterized by a set of histograms – one per class – where each histogram describes whether the image content is best modeled by the universal vocabulary or the corresponding class vocabulary. It is shown experimentally on three very different databases that this novel representation outperforms those approaches which characterize an image with a single histogram.


computer vision and pattern recognition | 2011

High-dimensional signature compression for large-scale image classification

Jorge Sánchez; Florent Perronnin

We address image classification on a large-scale, i.e. when a large number of images and classes are involved. First, we study classification accuracy as a function of the image signature dimensionality and the training set size. We show experimentally that the larger the training set, the higher the impact of the dimensionality on the accuracy. In other words, high-dimensional signatures are important to obtain state-of-the-art results on large datasets. Second, we tackle the problem of data compression on very large signatures (on the order of 105 dimensions) using two lossy compression strategies: a dimensionality reduction technique known as the hash kernel and an encoding technique based on product quantizers. We explain how the gain in storage can be traded against a loss in accuracy and/or an increase in CPU cost. We report results on two large databases — ImageNet and a dataset of lM Flickr images — showing that we can reduce the storage of our signatures by a factor 64 to 128 with little loss in accuracy. Integrating the decompression in the classifier learning yields an efficient and scalable training algorithm. On ILSVRC2010 we report a 74.3% accuracy at top-5, which corresponds to a 2.5% absolute improvement with respect to the state-of-the-art. On a subset of 10K classes of ImageNet we report a top-1 accuracy of 16.7%, a relative improvement of 160% with respect to the state-of-the-art.


computer vision and pattern recognition | 2012

AVA: A large-scale database for aesthetic visual analysis

Naila Murray; Luca Marchesotti; Florent Perronnin

With the ever-expanding volume of visual content available, the ability to organize and navigate such content by aesthetic preference is becoming increasingly important. While still in its nascent stage, research into computational models of aesthetic preference already shows great potential. However, to advance research, realistic, diverse and challenging databases are needed. To this end, we introduce a new large-scale database for conducting Aesthetic Visual Analysis: AVA. It contains over 250,000 images along with a rich variety of meta-data including a large number of aesthetic scores for each image, semantic labels for over 60 categories as well as labels related to photographic style. We show the advantages of AVA with respect to existing databases in terms of scale, diversity, and heterogeneity of annotations. We then describe several key insights into aesthetic preference afforded by AVA. Finally, we demonstrate, through three applications, how the large scale of AVA can be leveraged to improve performance on existing preference tasks.


international conference on computer vision | 2011

Assessing the aesthetic quality of photographs using generic image descriptors

Luca Marchesotti; Florent Perronnin; Diane Larlus; Gabriela Csurka

In this paper, we automatically assess the aesthetic properties of images. In the past, this problem has been addressed by hand-crafting features which would correlate with best photographic practices (e.g. “Does this image respect the rule of thirds?”) or with photographic techniques (e.g. “Is this image a macro?”). We depart from this line of research and propose to use generic image descriptors to assess aesthetic quality. We experimentally show that the descriptors we use, which aggregate statistics computed from low-level local features, implicitly encode the aesthetic properties explicitly used by state-of-the-art methods and outperform them by a significant margin.


IEEE Transactions on Pattern Analysis and Machine Intelligence | 2008

Universal and Adapted Vocabularies for Generic Visual Categorization

Florent Perronnin

Generic visual categorization (GVC) is the pattern classification problem that consists in assigning labels to an image based on its semantic content. This is a challenging task as one has to deal with inherent object/scene variations, as well as changes in viewpoint, lighting, and occlusion. Several state-of-the-art GVC systems use a vocabulary of visual terms to characterize images with a histogram of visual word counts. We propose a novel practical approach to GVC based on a universal vocabulary, which describes the content of all the considered classes of images, and class vocabularies obtained through the adaptation of the universal vocabulary using class-specific data. The main novelty is that an image is characterized by a set of histograms - one per class - where each histogram describes whether the image content is best modeled by the universal vocabulary or the corresponding class vocabulary. This framework is applied to two types of local image features: low-level descriptors such as the popular SIFT and high-level histograms of word co-occurrences in a spatial neighborhood. It is shown experimentally on two challenging data sets (an in-house database of 19 categories and the PASCAL VOC 2006 data set) that the proposed approach exhibits state-of-the-art performance at a modest computational cost.

Collaboration


Dive into the Florent Perronnin's collaboration.

Researchain Logo
Decentralizing Knowledge