Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Florian A. Salomons is active.

Publication


Featured researches published by Florian A. Salomons.


Journal of Cell Biology | 2006

A dynamic ubiquitin equilibrium couples proteasomal activity to chromatin remodeling

Nico P. Dantuma; Tom A. Groothuis; Florian A. Salomons; Jacques Neefjes

Protein degradation, chromatin remodeling, and membrane trafficking are critically regulated by ubiquitylation. The presence of several coexisting ubiquitin-dependent processes, each of crucial importance to the cell, is remarkable. This brings up questions on how the usage of this versatile regulator is negotiated between the different cellular processes. During proteotoxic stress, the accumulation of ubiquitylated substrates coincides with the depletion of ubiquitylated histone H2A and chromatin remodeling. We show that this redistribution of ubiquitin during proteotoxic stress is a direct consequence of competition for the limited pool of free ubiquitin. Thus, the ubiquitin cycle couples various ubiquitin-dependent processes because of a rate-limiting pool of free ubiquitin. We propose that this ubiquitin equilibrium may allow cells to sense proteotoxic stress in a genome-wide fashion.


Nature Structural & Molecular Biology | 2011

The AAA-ATPase VCP/p97 promotes 53BP1 recruitment by removing L3MBTL1 from DNA double-strand breaks

Klara Acs; Martijn S. Luijsterburg; Leena Ackermann; Florian A. Salomons; Thorsten Hoppe; Nico P. Dantuma

The accumulation of the human tumor suppressor 53BP1 at DNA damage sites requires the ubiquitin ligases RNF8 and RNF168. As 53BP1 recognizes dimethylated Lys20 in histone H4 (H4K20me2), the requirement for RNF8- and RNF168-mediated ubiquitylation has been unclear. Here we show that RNF8-mediated ubiquitylation facilitates the recruitment of the AAA-ATPase valosin-containing protein (VCP, also known as p97) and its cofactor NPL4 to sites of double-strand breaks. RIDDLE cells, which lack functional RNF168, also show impaired recruitment of VCP to DNA damage. The ATPase activity of VCP promotes the release of the Polycomb protein L3MBTL1 from chromatin, which also binds the H4K20me2 histone mark, thereby facilitating 53BP1 recruitment. Consistent with this, nematodes lacking the VCP orthologs CDC-48.1 or CDC-48.2, or cofactors UFD-1 or NPL-4, are highly sensitive to ionizing radiation. Our data suggest that human RNF8 and RNF168 promote VCP-mediated displacement of L3MBTL1 to unmask 53BP1 chromatin binding sites.


Journal of Molecular Biology | 2009

A Conserved Unfoldase Activity for the p97 AAA-ATPase in Proteasomal Degradation

Anne Beskow; Kristian Björk Grimberg; Laura C. Bott; Florian A. Salomons; Nico P. Dantuma; Patrick Young

The multifunctional AAA-ATPase p97 is one of the most abundant and conserved proteins in eukaryotic cells. The p97/Npl4/Ufd1 complex dislocates proteins that fail the protein quality control in the endoplasmic reticulum to the cytosol where they are subject to degradation by the ubiquitin/proteasome system. Substrate dislocation depends on the unfoldase activity of p97. Interestingly, p97 is also involved in the degradation of specific soluble proteasome substrates but the exact mode of action of p97 in this process is unclear. Here, we show that both the central pore and ATPase activity of p97 are necessary for the degradation of cytosolic ubiquitin-fusion substrates. Addition of a flexible extended C-terminal peptide to the substrate relieves the requirement for p97. Deletion mapping reveals a conserved length dependency of 20 residues for the peptide, which allows p97-independent degradation to occur. Our results suggest that initiation of unfolding may be more complex than previously anticipated and that the 19S regulatory complex of the proteasome can require preprocessing of highly folded, ubiquitylated substrates by the p97(Ufd1/Npl4) complex. Our data provide an explanation for the observation that p97 is only essential for a subpopulation of soluble substrates and predict that a common characteristic of soluble p97-dependent substrates is the lack of an initiation site to facilitate unfolding by the 26S proteasome.


The FASEB Journal | 2009

Minimal length requirement for proteasomal degradation of ubiquitin-dependent substrates

Lisette G.G.C. Verhoef; Christian Heinen; Alexandra Selivanova; Els F. Halff; Florian A. Salomons; Nico P. Dantuma

An erroneous transcriptional process, known as molecular misreading, gives rise to an alternative transcript of the ubiquitin B (UBB) gene. This transcript encodes the protein UBB+1, which comprises a ubiquitin moiety and a 19‐aa C‐terminal extension. UBB+1 is found in affected neurons in neurodegenerative diseases and behaves as an atypical ubiquitin fusion degradation (UFD) proteasome substrate that is poorly degraded and impedes the ubiquitin/proteasome system. Here, we show that the limited length of UBB+1 is responsible for its inefficient degradation and inhibi‐tory activity. Designed UFD substrates with an equally short 19‐aa or a 20‐aa C‐terminal extension were also poorly degraded and had a general inhibitory activity on the ubiquitin/proteasome system in two unrelated cell lines. Extending the polypeptide to 25 aa sufficed to convert the protein into an efficiently degraded proteasome substrate that lacked inhibitory activity. A similar length dependency was found for degradation of two UFD substrates in Saccharomyces cerevisiae, which suggests that the mechanisms underlying this length constraint are highly conserved. Extending UBB+1 also converted this protein into an efficient substrate of the proteasome. These observations provide an explanation for the accumulation of UBB+1 in neurodegenerative disorders and offers new insights into the physical constraints determining proteasomal degradation.— Verhoef, L. G. G. C., Heinen, C., Selivanova, A., Halff, E. F., Salomons, F. A., Dantuma, N. P. Minimal length requirement for proteasomal degradation of ubiquitin‐dependent substrates. FASEBJ. 23, 123‐133 (2009)


Cell Division | 2006

Ubiquitin crosstalk connecting cellular processes.

Tom A. Groothuis; Nico P. Dantuma; Jacques Neefjes; Florian A. Salomons

The polypeptide ubiquitin is used in many processes as different as endocytosis, multivesicular body formation, and regulation of gene transcription. Conjugation of a single ubiquitin moiety is typically used in these processes. A polymer of ubiquitin moieties is required for tagging proteins for proteasomal degradation. Besides its role in protein degradation, ubiquitin is also engaged as mono- or polymer in intracellular signalling and DNA repair. Since free ubiquitin is present in limiting amounts in cells, changes in the demands for ubiquitin in any of these processes is likely to indirectly affect other ubiquitin modifications. For example, proteotoxic stress strongly increases poly-ubiquitylated proteins at the cost of mono-ubiquitylated histones resulting in chromatin remodelling and altered transcription. Here we discuss the interconnection between ubiquitin-dependent processes and speculate on the functional significance of the ubiquitin equilibrium as a signalling route translating cellular stress into molecular responses.


Molecular and Cellular Biology | 2009

Selective Accumulation of Aggregation-Prone Proteasome Substrates in Response to Proteotoxic Stress

Florian A. Salomons; Victoria Menéndez-Benito; Claudia Böttcher; Brett A. McCray; J. Paul Taylor; Nico P. Dantuma

ABSTRACT Conditions causing an increase in misfolded or aberrant proteins can impair the activity of the ubiquitin/proteasome system (UPS). This observation is of particular interest, given the fact that proteotoxic stress is closely associated with a large variety of disorders. Although impairment of the UPS appears to be a general consequence of proteotoxic insults, the underlying mechanisms remain enigmatic. Here, we show that heat shock-induced proteotoxic stress resulted in conjugation of ubiquitin to detergent-insoluble protein aggregates, which coincided with reduced levels of free ubiquitin and impediment of ubiquitin-dependent proteasomal degradation. Interestingly, whereas soluble proteasome substrates returned to normal levels after a transient accumulation, the levels of an aggregation-prone substrate remained high even when the free ubiquitin levels were restored. Consistently, overexpression of ubiquitin prevented accumulation of soluble but not aggregation-prone substrates in thermally stressed cells. Notably, cells were also unable to resume degradation of aggregation-prone substrates after treatment with the translation inhibitor puromycin, indicating that selective accumulation of aggregation-prone proteins is a consistent feature of proteotoxic stress. Our data suggest that the failure of the UPS to clear aggregated proteins in the aftermath of proteotoxic stress episodes may contribute to the selective deposition of aggregation-prone proteins in conformational diseases.


Experimental Cell Research | 2010

Illuminating the ubiquitin/proteasome system

Florian A. Salomons; Klara Acs; Nico P. Dantuma

The ubiquitin/proteasome system (UPS) is responsible for the regulated processive degradation of proteins residing in the cytosol, nucleus, and endoplasmic reticulum. The two central players are ubiquitin, a small protein that is conjugated to substrates, and the proteasome, a large multi-subunit proteolytic complex that executes degradation of ubiquitylated proteins. Ubiquitylation and proteasomal degradation are highly dynamic processes. During the last decade, many researchers have started taking advantage of fluorescent proteins, which allow studying the dynamic nature of this system in the context of its natural environment: the living cell. In this review, we will summarize studies that have implemented this approach to examine the UPS and discuss novel insights in the dynamic organization of the UPS.


Circulation Research | 2015

Transcription Factor Runx2 Promotes Aortic Fibrosis and Stiffness in Type 2 Diabetes Mellitus

Uwe Raaz; Isabel N. Schellinger; Ekaterina Chernogubova; Christina Warnecke; Yosuke Kayama; Kiril Penov; Jan K. Hennigs; Florian A. Salomons; Suzanne M. Eken; Fabian Emrich; Wei H. Zheng; Matti Adam; Ann Jagger; Futoshi Nakagami; Ryuji Toh; Kensuke Toyama; Alicia Deng; Michael Buerke; Lars Maegdefessel; Gerd Hasenfuß; Joshua M. Spin; Philip S. Tsao

RATIONALE Accelerated arterial stiffening is a major complication of diabetes mellitus with no specific therapy available to date. OBJECTIVE The present study investigates the role of the osteogenic transcription factor runt-related transcription factor 2 (Runx2) as a potential mediator and therapeutic target of aortic fibrosis and aortic stiffening in diabetes mellitus. METHODS AND RESULTS Using a murine model of type 2 diabetes mellitus (db/db mice), we identify progressive structural aortic stiffening that precedes the onset of arterial hypertension. At the same time, Runx2 is aberrantly upregulated in the medial layer of db/db aortae, as well as in thoracic aortic samples from patients with type 2 diabetes mellitus. Vascular smooth muscle cell-specific overexpression of Runx2 in transgenic mice increases expression of its target genes, Col1a1 and Col1a2, leading to medial fibrosis and aortic stiffening. Interestingly, increased Runx2 expression per se is not sufficient to induce aortic calcification. Using in vivo and in vitro approaches, we further demonstrate that expression of Runx2 in diabetes mellitus is regulated via a redox-sensitive pathway that involves a direct interaction of NF-κB with the Runx2 promoter. CONCLUSIONS In conclusion, this study highlights Runx2 as a previously unrecognized inducer of vascular fibrosis in the setting of diabetes mellitus, promoting arterial stiffness irrespective of calcification.


The EMBO Journal | 2017

Ataxin‐3 consolidates the MDC1‐dependent DNA double‐strand break response by counteracting the SUMO‐targeted ubiquitin ligase RNF4

Annika Pfeiffer; Martijn S. Luijsterburg; Klara Acs; Wouter W. Wiegant; Angela Helfricht; Laura K Herzog; Melania Minoia; Claudia Böttcher; Florian A. Salomons; Haico van Attikum; Nico P. Dantuma

The SUMO‐targeted ubiquitin ligase RNF4 functions at the crossroads of the SUMO and ubiquitin systems. Here, we report that the deubiquitylation enzyme (DUB) ataxin‐3 counteracts RNF4 activity during the DNA double‐strand break (DSB) response. We find that ataxin‐3 negatively regulates ubiquitylation of the checkpoint mediator MDC1, a known RNF4 substrate. Loss of ataxin‐3 markedly decreases the chromatin dwell time of MDC1 at DSBs, which can be fully reversed by co‐depletion of RNF4. Ataxin‐3 is recruited to DSBs in a SUMOylation‐dependent fashion, and in vitro it directly interacts with and is stimulated by recombinant SUMO, defining a SUMO‐dependent mechanism for DUB activity toward MDC1. Loss of ataxin‐3 results in reduced DNA damage‐induced ubiquitylation due to impaired MDC1‐dependent recruitment of the ubiquitin ligases RNF8 and RNF168, and reduced recruitment of 53BP1 and BRCA1. Finally, ataxin‐3 is required for efficient MDC1‐dependent DSB repair by non‐homologous end‐joining and homologous recombination. Consequently, loss of ataxin‐3 sensitizes cells to ionizing radiation and poly(ADP‐ribose) polymerase inhibitor. We propose that the opposing activities of RNF4 and ataxin‐3 consolidate robust MDC1‐dependent signaling and repair of DSBs.


Scientific Reports | 2016

The polyglutamine-expanded androgen receptor responsible for spinal and bulbar muscular atrophy inhibits the APC/CCdh1 ubiquitin ligase complex

Laura C. Bott; Florian A. Salomons; Dragan Maric; Yuhong Liu; Diane E. Merry; Kenneth H. Fischbeck; Nico P. Dantuma

Polyglutamine expansion in the androgen receptor (AR) causes spinal and bulbar muscular atrophy (SBMA), an X-linked neuromuscular disease that is fully manifest only in males. It has been suggested that proteins with expanded polyglutamine tracts impair ubiquitin-dependent proteolysis due to their propensity to aggregate, but recent studies indicate that the overall activity of the ubiquitin-proteasome system is preserved in SBMA models. Here we report that AR selectively interferes with the function of the ubiquitin ligase anaphase-promoting complex/cyclosome (APC/C), which, together with its substrate adaptor Cdh1, is critical for cell cycle arrest and neuronal architecture. We show that both wild-type and mutant AR physically interact with the APC/CCdh1 complex in a ligand-dependent fashion without being targeted for proteasomal degradation. Inhibition of APC/CCdh1 by mutant but not wild-type AR in PC12 cells results in enhanced neurite outgrowth which is typically followed by rapid neurite retraction and mitotic entry. Our data indicate a role of AR in neuronal differentiation through regulation of APC/CCdh1 and suggest abnormal cell cycle reactivation as a pathogenic mechanism in SBMA.

Collaboration


Dive into the Florian A. Salomons's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Klara Acs

Karolinska Institutet

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jacques Neefjes

Leiden University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Tom A. Groothuis

Netherlands Cancer Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge