Florian Beuer
Charité
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Florian Beuer.
Clinical Oral Investigations | 2017
Jan-Frederik Güth; Cornelius Runkel; Florian Beuer; Michael Stimmelmayr; Daniel Edelhoff; Christine Keul
ObjectivesDirect and indirect digitalization offer two options for computer-aided design (CAD)/ computer-aided manufacturing (CAM)-generated restorations. The aim of this study was to evaluate the accuracy of different intraoral scanners and compare them to the process of indirect digitalization.Material and methodA titanium testing model was directly digitized 12 times with each intraoral scanner: (1) CS 3500 (CS), (2) Zfx Intrascan (ZFX), (3) CEREC AC Bluecam (BLU), (4) CEREC AC Omnicam (OC) and (5) True Definition (TD). As control, 12 polyether impressions were taken and the referring plaster casts were digitized indirectly with the D-810 laboratory scanner (CON). The accuracy (trueness/precision) of the datasets was evaluated by an analysing software (Geomagic Qualify 12.1) using a “best fit alignment” of the datasets with a highly accurate reference dataset of the testing model, received from industrial computed tomography.ResultsDirect digitalization using the TD showed the significant highest overall “trueness”, followed by CS. Both performed better than CON. BLU, ZFX and OC showed higher differences from the reference dataset than CON. Regarding the overall “precision”, the CS 3500 intraoral scanner and the True Definition showed the best performance. CON, BLU and OC resulted in significantly higher precision than ZFX did.ConclusionsWithin the limitations of this in vitro study, the accuracy of the ascertained datasets was dependent on the scanning system. The direct digitalization was not superior to indirect digitalization for all tested systems.Clinical relevanceRegarding the accuracy, all tested intraoral scanning technologies seem to be able to reproduce a single quadrant within clinical acceptable accuracy. However, differences were detected between the tested systems.
Journal of The Mechanical Behavior of Biomedical Materials | 2016
Andreas Schwitalla; Mohamed Abou-Emara; Tycho Zimmermann; Tobias Spintig; Florian Beuer; Justus Lackmann; Wolf-Dieter Müller
The high-performance polymer PEEK (poly-ether-ether-ketone) is more and more being used in the field of dentistry, mainly for removable and fixed prostheses. In cases of screw-retained implant-supported reconstructions of PEEK, an abutment screw made of PEEK might be advantageous over a conventional metal screw due to its similar elasticity. Also in case of abutment screw fracture, a screw of PEEK could be removed more easily. M1.6-abutment screws of four different PEEK compounds were subjected to tensile tests to set their maximum tensile strengths in relation to an equivalent stress of 186MPa, which is aused by a tightening torque of 15Ncm. Two screw types were manufactured via injection molding and contained 15% short carbon fibers (sCF-15) and 40% (sCF-40), respectively. Two screw types were manufactured via milling and contained 20% TiO2 powder (TiO2-20) and >50% parallel orientated, continuous carbon fibers (cCF-50). A conventional abutments screw of Ti6Al4V (Ti; CAMLOG(®) abutment screw, CAMLOG, Wimsheim, Germany) served as control. The maximum tensile strength was 76.08±5.50MPa for TiO2-20, 152.67±15.83MPa for sCF-15, 157.29±20.11MPa for sCF-40 and 191.69±36.33MPa for cCF-50. The maximum tensile strength of the Ti-screws amounted 1196.29±21.4MPa. The results of the TiO2-20 and the Ti screws were significantly different from the results of the other samples, respectively. For the manufacturing of PEEK abutment screws, PEEK reinforced by >50% continuous carbon fibers would be the material of choice.
Materials | 2018
Branko Trajkovski; Matthias Jaunich; Wolf-Dieter Müller; Florian Beuer; Gregory-George Zafiropoulos; Alireza Houshmand
The indication-oriented Dental Bone Graft Substitutes (DBGS) selection, the correct bone defects classification, and appropriate treatment planning are very crucial for obtaining successful clinical results. However, hydrophilic, viscoelastic, and physicochemical properties’ influence on the DBGS regenerative potential has poorly been studied. For that reason, we investigated the dimensional changes and molecular mobility by Dynamic Mechanical Analysis (DMA) of xenograft (cerabone®), synthetic (maxresorb®), and allograft (maxgraft®, Puros®) blocks in a wet and dry state. While no significant differences could be seen in dry state, cerabone® and maxresorb® blocks showed a slight height decrease in wet state, whereas both maxgraft® and Puros® had an almost identical height increase. In addition, cerabone® and maxresorb® blocks remained highly rigid and their damping behaviour was not influenced by the water. On the other hand, both maxgraft® and Puros® had a strong increase in their molecular mobility with different damping behaviour profiles during the wet state. A high-speed microscopical imaging system was used to analyze the hydrophilicity in several naturally derived (cerabone®, Bio-Oss®, NuOss®, SIC® nature graft) and synthetic DBGS granules (maxresorb®, BoneCeramic®, NanoBone®, Ceros®). The highest level of hydrophilicity was detected in cerabone® and maxresorb®, while Bio-Oss® and BoneCeramic® had the lowest level of hydrophilicity among both naturally derived and synthetic DBGS groups. Deviations among the DBGS were also addressed via physicochemical differences recorded by Micro Computed Tomography, Scanning Electron Microscopy, Fourier Transform Infrared Spectroscopy, X-ray powder Diffractometry, and Thermogravimetric Analysis. Such DBGS variations could influence the volume stability at the grafting site, handling as well as the speed of vascularization and bone regeneration. Therefore, this study initiates a new insight into the DBGS differences and their importance for successful clinical results.
Clinical Oral Investigations | 2018
Matthias Obermeier; Oliver Ristow; Kurt Erdelt; Florian Beuer
ObjectivesThis in-vitro study was performed to compare the contact wear, fracture strength and failure mode of implant-supported all-ceramic single crowns manufactured with various fabrication and fixation concepts.Materials and methodsFifty dental implants (Conelog Ø 4,3mm/L11mm, Camlog Biotechnologies AG) were embedded and treated with all-ceramic molar single-crowns. Three groups received hand-layered zirconia crowns (IPS e.max Ceram/ IPS e.max ZirCAD, Ivoclar Vivadent AG): CZL (cement-retained zirconia-based layered) group crowns were cemented conventionally, SZL (screw-retained zirconia-based layered) group crowns were screw-retained, MZL (modified zirconia-based layered) group crowns showed a different coping design with screw retention. The specimens of SST (screw-retained sintering-technique) and SFL (screw-retained full-contour lithium-disilicate) group were CAD/CAM (Computer-aided design/computer-aided manufacturing) fabricated in the sintering technique (IPS e.max ZirCAD/IPS e.max CAD, Ivoclar Vivadent AG) and full-contour of lithium disilicate (IPS e.max CAD, Ivoclar Vivadent AG) respectively and screw-retained. All specimens underwent artificial aging, load until failure and a scanning electron microscopy (SEM) analysis. The received data were statistically compared (one-way ANOVA; Student-Newman-Keuls test; Mann-Whitney U-test) at a significance level of 5%.ResultsMouth-motion fatigue testing caused two abutment fractures (SST group and SZL group) and two chipping events (CZL group). Specimens of MZL group showed statistically significant less contact wear compared to the other groups (p<0.001). There was no statistical difference between the groups in terms of the maximum fracture load. SEM-analysis showed a more homogenous structure and surface of CAD/CAM fabricated specimens towards manually veneered components.ConclusionsThe mode of retention did not influence the fracture resistance but the failure patterns of the specimens. CAD/CAM milled lithium-disilicate crowns seemed to be a preserving factor for dental implants.Clinical relevanceThe mode of retention and veneering influences the mechanical performance of implant-supported single crowns.
Journal of Oral Implantology | 2016
Andreas Wachtel; Tycho Zimmermann; Tobias Spintig; Florian Beuer; Wolf-Dieter Müller; Andreas Schwitalla
Bacterial leakage from the implant-abutment-interface (IAI) is suspected of contributing to the development of peri-implantitis. The aim of the study was to develop a straightforward test setup to evaluate the bacterial leakage of the IAI of 2-piece implant systems under laboratory conditions. A test suspension of Enterococcus faecium was injected into 7 implants (PerioType Rapid Implants) prior to abutment fixation. The IAI was covered by kanamycin aesculn azide agar (KAAA), which serves as an optical indicator for E. faecium . The specimens were cyclically loaded with a force of 120 N for up to 1 000 000 cycles in a universal testing machine in accordance with the ISO 14801:2007 standard. The color change of the KAAA was recorded. Three of the 7 implants showed bacterial leakage before the cyclic loading test started. The bacterial tightness of the IAIs of the 4 remaining implants lasted for 35 680 ± 22 467 cycles on average. The experimental setup at hand provides the means for a straightforward evaluation of the bacterial tightness of the IAI of 2-piece dental implants.
Clinical Oral Investigations | 2016
Kazuhiko Ueda; Florian Beuer; Michael Stimmelmayr; Kurt Erdelt; Christine Keul; Jan-Frederik Güth
Journal of Prosthodontics | 2016
Paolo Cardelli; Francesco Pio Manobianco; Nicola Serafini; Giovanna Murmura; Florian Beuer
Clinical Oral Investigations | 2017
Claudio Cacaci; Friederike Cantner; Thomas Mücke; Peter Randelzhofer; Jan Hajtó; Florian Beuer
Clinical Oral Investigations | 2017
Joana Schönberger; Kurt-Jürgen Erdelt; Daniel Bäumer; Florian Beuer
Clinical Oral Investigations | 2016
Florian Beuer; Caroline Sachs; Julian Groesser; Jan-Frederik Gueth; Michael Stimmelmayr