Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Florian Franz is active.

Publication


Featured researches published by Florian Franz.


Forensic Toxicology | 2015

Characterization of the four designer benzodiazepines clonazolam, deschloroetizolam, flubromazolam, and meclonazepam, and identification of their in vitro metabolites

Laura M. Huppertz; Philippe Bisel; Folker Westphal; Florian Franz; Volker Auwärter; Bjoern Moosmann

In 2012, the first designer benzodiazepines were offered in Internet shops as an alternative to prescription-only benzodiazepines. Soon after these compounds were scheduled in different countries, new substances such as clonazolam, deschloroetizolam, flubromazolam, and meclonazepam started to emerge. This article presents the characterization of these four designer benzodiazepines using nuclear magnetic resonance spectroscopy, gas chromatography–electron ionization-mass spectrometry, liquid chromatography–tandem mass spectrometry, liquid chromatography–quadrupole time-of-flight-mass spectrometry, and infrared spectroscopy. The major in vitro phase I metabolites of the substances were investigated using human liver microsomes. At least one monohydroxylated metabolite was identified for each compound. Dihydroxylated metabolites were found for deschloroetizolam and flubromazolam. For clonazolam and meclonazepam, signals at mass-to-charge ratios corresponding to the reduction of the nitro group to an amine were observed. Desalkylations, dehalogenations, or carboxylations were not observed for any of the compounds investigated. Furthermore, for clonazolam and meclonazepam, no metabolites formed by a combination of reduction and mono-/dihydroxylation were detected. This knowledge will help to analyze these drugs in biological samples.


Drug Testing and Analysis | 2017

Phase I metabolism of the highly potent synthetic cannabinoid MDMB-CHMICA and detection in human urine samples

Florian Franz; Verena Angerer; Bjoern Moosmann; Volker Auwärter

Among the recently emerged synthetic cannabinoids, MDMB-CHMICA (methyl N-{[1-(cyclohexylmethyl)-1H-indol-3-yl]carbonyl}-3-methylvalinate) shows an extraordinarily high prevalence in intoxication cases, necessitating analytical methods capable of detecting drug uptake. In this study, the in vivo phase I metabolism of MDMB-CHMICA was investigated using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) and liquid chromatography-electrospray ionization-quadrupole time-of-flight-mass spectrometry (LC-ESI-Q ToF-MS) techniques. The main metabolites are formed by hydrolysis of the methyl ester and oxidation of the cyclohexyl methyl side chain. One monohydroxylated metabolite, the ester hydrolysis product and two further hydroxylated metabolites of the ester hydrolysis product are suggested as suitable targets for a selective and sensitive detection in urine. All detected in vivo metabolites could be verified in vitro using a human liver microsome assay. Two of the postulated main metabolites were successfully included in a comprehensive LC-ESI-MS/MS screening method for synthetic cannabinoid metabolites. The screening of 5717 authentic urine samples resulted in 818 cases of confirmed MDMB-CHMICA consumption (14%). Since the most common route of administration is smoking, smoke condensates were analyzed to identify relevant thermal degradation products. Pyrolytic cleavage of the methyl ester and amide bond led to degradation products which were also formed metabolically. This is particularly important in hair analysis, where detection of metabolites is commonly considered a proof of consumption. In addition, intrinsic activity of MDMB-CHMICA at the CB1 receptor was determined applying a cAMP accumulation assay and showed that the compound is a potent full agonist. Based on the collected data, an enhanced interpretation of analytical findings in urine and hair is facilitated. Copyright


Analytical and Bioanalytical Chemistry | 2016

Metabolites of synthetic cannabinoids in hair—proof of consumption or false friends for interpretation?

Florian Franz; Verena Angerer; Maren Hermanns-Clausen; Volker Auwärter; Bjoern Moosmann

AbstractThe detection of drug metabolites in hair is widely accepted as a proof for systemic uptake of the drug, unless the metabolites can be formed as artefacts. However, regarding synthetic cannabinoids, not much is known about mechanisms of incorporation into hair. For a correct interpretation concerning hair findings of these compounds and their metabolites, it is necessary to identify the different routes of incorporation and to assess their contribution to analytical findings. This study presents the results of the LC-ESI-MS/MS analysis of an authentic hair sample taken from a patient with a known history of heavy consumption of synthetic cannabinoids. In the authentic hair sample, 5F-PB-22 and AB-CHMINACA as well as their main metabolites 5F-PB-22 3-carboxyindole, PB-22 5-OH-pentyl, and AB-CHMINACA valine were detected in all segments, comprising segments grown in a time period where the substances had not been distributed on the ‘legal high’ market. To enable interpretation of the results regarding the distribution of the detected analytes along the hair shaft, the stability of 5F-PB-22 and AB-CHMINACA in hair matrix and under thermal stress was assessed. The stability tests revealed that the three ‘metabolites’ are also formed in externally contaminated hair after storage of the samples under different conditions. In addition, 5F-PB-22 3-carboxyindole and AB-CHMINACA valine were identified as degradation products in smoke condensate. Therefore, interpretation of ‘metabolite’ findings of compounds comprising chemically labile amide/ester bonds or 5-fluoro-pentyl side chains should be carried out with utmost care, taking into account the different mechanisms of formation and incorporation into hair. Graphical AbstractDegradation processes leading to artefacts identical with main metabolites of synthetic cannabinoids


Clinical Chemistry and Laboratory Medicine | 2017

Immunoassay screening in urine for synthetic cannabinoids – an evaluation of the diagnostic efficiency

Florian Franz; Verena Angerer; Hanna Jechle; Melanie Pegoro; Harald Ertl; Georg Weinfurtner; David Janele; Christian Schlögl; Matthias Friedl; Stefan Gerl; Reinhard Mielke; Ralf Zehnle; Matthias Wagner; Bjoern Moosmann; Volker Auwärter

Abstract Background: The abuse of synthetic cannabinoids (SCs) as presumed legal alternative to cannabis poses a great risk to public health. For economic reasons many laboratories use immunoassays (IAs) to screen for these substances in urine. However, the structural diversity and high potency of these designer drugs places high demands on IAs regarding cross-reactivity of the antibodies used and detection limits. Methods: Two retrospective studies were carried out in order to evaluate the capability of two homogenous enzyme IAs for the detection of currently prevalent SCs in authentic urine samples. Urine samples were analyzed utilizing a ‘JWH-018’ kit and a ‘UR-144’ kit. The IA results were confirmed by an up-to-date liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) screening method covering metabolites of 45 SCs. Results: The first study (n=549) showed an 8% prevalence of SCs use (LC-MS/MS analysis) among inpatients of forensic-psychiatric clinics, whereas all samples were tested negative by the IAs. In a second study (n=200) the combined application of both IAs led to a sensitivity of 2% and a diagnostic accuracy of 51% when applying the recommended IA cut-offs. Overall, 10 different currently prevalent SCs were detected in this population. The results can be explained by an insufficient cross-reactivity of the antibodies towards current SCs in combination with relatively high detection limits of the IAs. Conclusions: In light of the presented study data it is strongly recommended not to rely on the evaluated IA tests for SCs in clinical or forensic settings. For IA kits of other providers similar results can be expected.


Clinical Toxicology | 2018

Acute side effects after consumption of the new synthetic cannabinoids AB-CHMINACA and MDMB-CHMICA

Maren Hermanns-Clausen; Dieter Müller; Josephine Kithinji; Verena Angerer; Florian Franz; Florian Eyer; Hartmud Neurath; Gesine Liebetrau; Volker Auwärter

Abstract Introduction: In 2014, the “European Monitoring Centre for Drugs and Drug Addiction” (EMCDDA) reported on 30 novel synthetic cannabinoids (SCs). Among these were indole- and indazole-based valine derivatives with a cyclohexylmethyl side chain (e.g., AB-CHMINACA and MDMB-CHMICA), which represent a new class of SCs. Methods: A prospective observational study of patients treated in emergency departments (EDs) after the intake of SCs was conducted. Clinical and laboratory data were combined and reported to a poison control centre. Serum and/or urine samples of ED patients were analyzed using LC–MS/MS. Results: Forty four patients (39 male, five female, 12–48 years) were included. AB-CHMINACA (MDMB-CHMICA) was identified in 20 (19) serum samples, and in 21 (25) urine samples, respectively. In 19 of the cases, more than one SC was present. Other psychoactive substances (mainly amfetamines) were identified in seven cases, but in five out of these in urine samples only. Based on the Poison Severity Score, severity of poisoning was minor (4), moderate (31) or severe (9). Most frequently reported neuropsychiatric symptoms were CNS-depression (n = 21, 61%), disorientation (n = 20, 45%), generalized seizures (n = 12, 27%), combativeness (n = 8, 18%) and extreme agitation (n = 7, 16%). Duration of symptoms lasting 24 hours or longer occurred in 15 cases (34%). Discussion: The prevalence of certain neuropsychiatric symptoms was higher in our study than in former reports after the intake of SCs of the aminoalkylindole-type (first generation) SCs. In addition, severe poisoning and duration of symptoms were also higher. Conclusions: In this study, the valine derivative AB-CHMINACA and the tert-leucine derivative MDMB-CHMICA (“third generation of SCs”) seem to be associated with more severe clinical toxicity than was previously reported in patients exposed to earlier generation SCs such as JWH-018. However, this observation needs to be confirmed with a larger cohort of patients with analytically confirmed abuse of third generation SCs. The rapid turnover of SCs on the drug market together with the occurrence of SCs such as AB-CHMINACA and MDMB-CHMICA is alarming, especially because of the unexpectedly high frequency of neuropsychiatric symptoms.


Drug Testing and Analysis | 2018

Phase I metabolism of the recently emerged synthetic cannabinoid CUMYL-PEGACLONE and detection in human urine samples

Lukas Mogler; Maurice Wilde; Laura M. Huppertz; Georg Weinfurtner; Florian Franz; Volker Auwärter

Indole-, indazole-, or azaindole-based synthetic cannabinoids (SCs), bearing a cumyl substituent are a widespread, recreationally used subgroup of new psychoactive substances (NPS). The latest cumyl-derivative, CUMYL-PEGACLONE, emerged in December 2016 on the German drug market. The substance features a novel γ-carboline core structure, which is most likely synthesized to bypass generic legislative approaches to control SCs by prohibiting distinct core structures. Using liquid chromatography-tandem mass spectrometry and liquid chromatography-high resolution mass spectrometry techniques, the main in vivo phase I metabolites of this new substance were detected. A pooled human liver microsome assay was applied to generate in vitro reference spectra of CUMYL-PEGACLONE phase I metabolites. Additionally, 30 urine samples were investigated leading to 22 in vivo metabolites. A metabolite mono-hydroxylated at the γ-carbolinone core system and a metabolite with an additional carbonyl group at the pentyl side chain were evaluated as highly specific and sensitive markers to proof CUMYL-PEGACLONE uptake. Moreover, 3 immunochemical assays commonly used for SC screening in urine were tested for their capability of detecting the new drug but failed due to insufficient cross-reactivity.


Forensic Toxicology | 2018

Human phase I metabolism of the novel synthetic cannabinoid 5F-CUMYL-PEGACLONE

Lukas Mogler; Sebastian Halter; Maurice Wilde; Florian Franz; Volker Auwärter

Purpose5F-CUMYL-PEGACLONE is a recently emerged γ-carbolinone derived synthetic cannabinoid. The present study aimed to identify phase I metabolites to reliably prove consumption of the substance by urine analysis and to differentiate from the uptake of the non-fluorinated analog CUMYL-PEGACLONE.MethodsFor metabolite characterization, phase I metabolites were analyzed by liquid chromatography–high resolution mass spectrometry after incubation with pooled human liver microsomes. Reliability of the biomarkers was evaluated by analysis of human urine samples (n = 20) by liquid chromatography–triple quadrupole tandem mass spectrometry. Sample preparation included β-glucuronidase treatment followed by liquid-liquid extraction.ResultsIn total, 15 metabolites were detected in vivo and characterized. Metabolic reactions were primarily observed at the γ-carbolinone core and the 5-fluoropentyl chain, and included N-dealkylation, hydroxylation, hydrolytic defluorination, formation of a dihydrodiol, oxidation to the pentanoic acid metabolite and formation of the propionic acid metabolite. Six of these metabolites were identical with phase I metabolites of CUMYL-PEGACLONE, which must be considered for interpretation of analytical findings in urine samples.Conclusions5F-CUMYL-PEGACLONE was subject to extensive metabolism in humans. The propionic acid metabolite was the most abundant metabolite in all urine samples and should be targeted when maximum sensitivity is needed (e.g., drug abstinence control). However, this metabolite also occurs in the biotransformation of the non-fluorinated analog and is, therefore, not a compound-specific marker. For differentiation, a metabolite hydroxylated at the γ-carbolinone core showed to be the most reliable marker and should be used as an additional target analyte.


Current Pharmaceutical Biotechnology | 2018

Metabolism of Nine Synthetic Cannabinoid Receptor Agonists Encountered in Clinical Casework: Major in vivo Phase I Metabolites of AM-694, AM-2201, JWH-007, JWH-019, JWH-203, JWH-307, MAM-2201, UR-144 and XLR-11 in Human Urine Using LC-MS/MS

Melanie Hutter; Sebastian Broecker; Stefan Kneisel; Florian Franz; Simon D. Brandt; Volker Auwärter

BACKGROUND `Herbal mixtures` containing synthetic cannabinoid receptor agonists (SCRAs) are promoted as legal alternative to marihuana and are easily available via the Internet. Keeping analytical methods for the detection of these SCRAs up-to-date is a continuous challenge for clinicians and toxicologists due to the high diversity of the chemical structures and the frequent emergence of new compounds. Since many SCRAs are extensively metabolized, analytical methods used for urine testing require previous identification of the major metabolites of each compound. OBJECTIVE The aim of this study was to identify the in vivo major metabolites of nine SCRAs (AM- 694, AM-2201, JWH-007, JWH-019, JWH-203, JWH-307, MAM-2201, UR-144, XLR-11) for unambiguous detection of a drug uptake by analysis of urine samples. METHOD Positive urine samples from patients of hospitals, detoxification and therapy centers as well as forensic-psychiatric clinics were analyzed by means of liquid chromatography-tandem mass spectrometry (LC-MS/MS) and liquid chromatography-quadrupole time-of-flight mass spectrometry (LCqToF- MS) for investigation of the major in vivo metabolites. RESULTS For all investigated SCRAs, monohydroxylation, dihydroxylation and/or formation of the Nhexanoic/ pentanoic acid metabolites were among the most abundant metabolites detected in human urine samples. Substitution of the fluorine atom was observed to be an important metabolic reaction for compounds carrying an N-(5-fluoropentyl) side chain. N-Dealkylated metabolites were not detected in vivo. CONCLUSION The investigated metabolites facilitate the reliable detection of drug uptake by analysis of urine samples. For distinction between uptake of the fluorinated and the non-fluorinated analogs, the N-(4-hydroxypentyl) metabolite of the non-fluorinated analog was identified as a useful analytical target and consumption marker.


Analytical Chemistry | 2016

Detection and Activity Profiling of Synthetic Cannabinoids and Their Metabolites with a Newly Developed Bioassay

Annelies Cannaert; Jolien Storme; Florian Franz; Volker Auwärter; Christophe P. Stove


Journal of Mass Spectrometry | 2016

Characterization and in vitro phase I microsomal metabolism of designer benzodiazepines — an update comprising adinazolam, cloniprazepam, fonazepam, 3‐hydroxyphenazepam, metizolam and nitrazolam

Bjoern Moosmann; Philippe Bisel; Florian Franz; Laura M. Huppertz; Volker Auwärter

Collaboration


Dive into the Florian Franz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Simon D. Brandt

Liverpool John Moores University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Auwärter

University of Freiburg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge