Florian Grandl
ETH Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Florian Grandl.
Journal of Dairy Science | 2015
Amélie Vanlierde; Marie-Laure Vanrobays; Frédéric Dehareng; Eric Froidmont; Hélène Soyeurt; S. McParland; E. Lewis; M.H. Deighton; Florian Grandl; Michael Kreuzer; Birgit Gredler; Pierre Dardenne; Nicolas Gengler
The main goal of this study was to develop, apply, and validate a new method to predict an indicator for CH4 eructed by dairy cows using milk mid-infrared (MIR) spectra. A novel feature of this model was the consideration of lactation stage to reflect changes in the metabolic status of the cow. A total of 446 daily CH4 measurements were obtained using the SF6 method on 142 Jersey, Holstein, and Holstein-Jersey cows. The corresponding milk samples were collected during these CH4 measurements and were analyzed using MIR spectroscopy. A first derivative was applied to the milk MIR spectra. To validate the novel calibration equation incorporating days in milk (DIM), 2 calibration processes were developed: the first was based only on CH4 measurements and milk MIR spectra (independent of lactation stage; ILS); the second included milk MIR spectra and DIM information (dependent on lactation stage; DLS) by using linear and quadratic modified Legendre polynomials. The coefficients of determination of ILS and DLS equations were 0.77 and 0.75, respectively, with standard error of calibration of 63g/d of CH4 for both calibration equations. These equations were applied to 1,674,763 milk MIR spectra from Holstein cows in the first 3 parities and between 5 and 365 DIM. The average CH4 indicators were 428, 444, and 448g/d by ILS and 444, 467, and 471g/d by DLS for cows in first, second, and third lactation, respectively. Behavior of the DLS indicator throughout the lactations was in agreement with the literature with values increasing between 0 and 100 DIM and decreasing thereafter. Conversely, the ILS indicator of CH4 emission decreased at the beginning of the lactation and increased until the end of the lactation, which differs from the literature. Therefore, the DLS indicator seems to better reflect biological processes that drive CH4 emissions than the ILS indicator. The ILS and DLS equations were applied to an independent data set, which included 59 respiration chamber measurements of CH4 obtained from animals of a different breed across a different production system. Results indicated that the DLS equation was much more robust than the ILS equation allowing development of indicators of CH4 emissions by dairy cows. Integration of DIM information into the prediction equation was found to be a good strategy to obtain biologically meaningful CH4 values from lactating cows by accounting for biological changes that occur throughout the lactation.
Journal of Dairy Science | 2016
Florian Grandl; Sergej L. Amelchanka; M. Furger; Marcus Clauss; Johanna O. Zeitz; Michael Kreuzer; Angela Schwarm
Previous studies indicated that absolute CH4 emissions and CH4 yield might increase and that milk production efficiency might decrease with age in cattle. Both would make strategies to increase longevity in dairy cattle less attractive. These aspects were experimentally determined in Brown Swiss cattle distributed continuously across a large age range. Thirty lactating dairy cows (876-3,648 d of age) received diets consisting of hay, corn silage, and grass pellets supplemented with 0 or 5kg of concentrate per day. Twelve heifers (199-778 d of age) received hay only. Cows and heifers were members of herds subjected to the 2 different feeding regimens (with or without concentrate) for the past 10 yr. Methane emissions were measured individually for 2 d in open-circuit respiration chambers, followed by quantifying individual feed intake and milk yield over 8 d. Additional data on digestibility, rumination time, and passage time of feed of all experimental animals were available. Regression analyses were applied to evaluate effects of age and feeding regimen. Body weight, milk yield, and the hay proportion of forage dry matter intake were considered as covariates. Methane emissions per unit of intake, body weight, and milk yield were significantly related to age. Their development in the cows with age was characterized by an increase to maximum at around 2,000 d of age, followed by a decline. This response was not accompanied by corresponding age-related changes in intake, chewing activity, digesta passage time, and digestibility of organic matter, which would have explained shifts in CH4. However, fiber digestibility showed a similar change with age as methane emissions, resulting in quite stable methane emissions per unit of digestible fiber. As expected, methane emissions intensity per unit of milk produced was greater by 8% without concentrate than with concentrate, but no difference was noted in the response to age when the animals were subjected to different feeding regimens. The efficiency of milk production was only marginally influenced by age and diet, and no different response was observed for age in the 2 dietary regimens. In conclusion, life cycle analyses of milk production systems focusing on longevity should consider changing methane yields with age in addition to the variation in environmental costs for replacements of culled cows.
Journal of Dairy Science | 2016
Florian Grandl; S P Luzi; M. Furger; Johanna O. Zeitz; Florian Leiber; Sylvia Ortmann; Marcus Clauss; Michael Kreuzer; Angela Schwarm
Milk production strategies focusing on longevity and limited use of concentrate are receiving increasing attention. To evaluate such strategies, knowledge of the development with age of animal characteristics, particularly digestion, is indispensable. We therefore investigated the development of feed intake, chewing activity, and digestion in 30 lactating Brown Swiss cows (876-3,648 d old) and 12 heifers (199-778 d old). We also studied whether age effects were exhibited differently in animals selected from herds subjected for 11 yr either to a forage-only or to a forage-concentrate feeding regimen. Forages consisted of grass hay (the only feed for heifers), corn silage, and grass pellets. Measurements lasted for 8 d, where amounts and composition of feeds, feces, and milk were recorded and analyzed. Ruminal pH data and eating and rumination activity were assessed by pH sensors put into the rumen and halter-mounted noseband sensors. The mean retention time of feed particles was assessed using Cr-mordanted fiber and data were used to calculate dry matter gut fill. Data were subjected to regression analyses with age and feeding regimen as explanatory variables, and body weight, milk yield, and proportion of hay in forage as covariates. This allowed separating age-related changes of body weight and milk yield from independent age effects and correcting for differences in preference for individual forages. In cows, organic matter intake increased with age (from slightly below to above 20kg/d), as did mean retention time and gut fill. Digestibility of organic matter did not show a clear age dependency, but fiber digestibility had a maximum in cows of around 4 to 6 yr of age. Ruminal pH and absolute eating and rumination times did not vary with cow age. Young and old cows chewed regurgitated boluses more intensively (60-70 times) than middle-aged cows (about 50 times). Effects of feeding regimen were small, except for fiber intake and rumination time per unit of intake, owing to the different fiber content of the diets. No significant interactions between age and feeding regimen were found. Heifers spent more time eating and ruminating per unit of feed than cows, which resulted in a high fiber digestibility. Irrespective of the feeding regimen tested, older cows maintained intake and digestion efficiency with longer retention times and chewing rumination boluses more intensively. The results support efforts to extend the length of productive life in dairy cows.
Physiology & Behavior | 2015
Ikki Matsuda; John Chih Mun Sha; Sylvia Ortmann; Angela Schwarm; Florian Grandl; Judith Caton; Warner Jens; Michael Kreuzer; Diana Marlena; Katharina B Hagen; Marcus Clauss
Behavioral observations and small fecal particles compared to other primates indicate that free-ranging proboscis monkeys (Nasalis larvatus) have a strategy of facultative merycism(rumination). In functional ruminants (ruminant and camelids), rumination is facilitated by a particle sorting mechanism in the forestomach that selectively retains larger particles and subjects them to repeated mastication. Using a set of a solute and three particle markers of different sizes (b2, 5 and 8mm),we displayed digesta passage kinetics and measured mean retention times (MRTs) in four captive proboscis monkeys (6–18 kg) and compared the marker excretion patterns to those in domestic cattle. In addition, we evaluated various methods of calculating and displaying passage characteristics. The mean ± SD dry matter intake was 98 ± 22 g kg−0.75 d−1, 68 ± 7% of which was browse. Accounting for sampling intervals in MRT calculation yielded results that were not affected by the sampling frequency. Displaying marker excretion patterns using fecal marker concentrations (rather than amounts) facilitated comparisons with reactor theory outputs and indicated that both proboscis and cattle digestive tracts represent a series of very few tank reactors. However, the separation of the solute and particle marker and the different-sized particle markers, evident in cattle, did not occur in proboscis monkeys, in which all markers moved together, at MRTs of approximately 40 h. The results indicate that the digestive physiology of proboscis monkeys does not show typical characteristics of ruminants, which may explain why merycism is only a facultative strategy in this species.
Animal | 2017
Florian Grandl; Johanna O. Zeitz; Marcus Clauss; M. Furger; Michael Kreuzer; Angela Schwarm
The changes taking place with age in energy turnover of dairy cattle are largely unknown. It is unclear whether the efficiency of energy utilization in digestion (characterized by faecal and methane energy losses) and in metabolism (characterized by urine and heat energy losses) is altered with age. In the present study, energy balance data were obtained from 30 lactating Brown Swiss dairy cows aged between 2 and 10 years, and 12 heifers from 0.5 to 2 years of age. In order to evaluate a possible dependence of age effects on diet type, half of the cattle each originated from two herds kept at the same farm, which were fed either on a forage-only diet or on the same forage diet but complemented with 5 kg/day of concentrate since their first calving. During 2 days, the gaseous exchange of the animals was quantified in open-circuit respiration chambers, followed by an 8-day period of feed, faeces, urine and milk collection. Daily amounts and energy contents were used to calculate complete energy balances. Age and feeding regime effects were analysed by parametric regression analysis where BW, milk yield and hay proportion in forage as consumed were considered as covariates. Relative to intake of gross energy, the availability of metabolizable energy (ME) increased with age. This was not the result of an increasing energy digestibility, but of proportionately lower energy losses with methane (following a curvilinear relationship with the greatest losses in middle-aged cows) and urine (continuously declining). The efficiency of utilization of ME for milk production (k l) increased with age. Potential reasons include an increase in the propionate-to-acetate ratio in the rumen because of a shift away from fibre degradation and methane formation as well as lower urine energy losses. The greater k l allowed older cows to accrete more energy reserves in the body. As expected, offering concentrate enhanced digestibility, metabolizability and metabolic utilization of energy. Age and feeding regime did not interact significantly. In conclusion, older cows seem to have digestive and metabolic strategies to use dietary energy to a certain degree more efficiently than younger cows.
Journal of Dairy Science | 2018
Amélie Vanlierde; Hélène Soyeurt; Nicolas Gengler; Frédéric Colinet; Eric Froidmont; Michael Kreuzer; Florian Grandl; M.J. Bell; P. Lund; Dana Olijhoek; Maguy Eugène; C. Martin; Björn Kuhla; Frédéric Dehareng
Evaluation and mitigation of enteric methane (CH4) emissions from ruminant livestock, in particular from dairy cows, have acquired global importance for sustainable, climate-smart cattle production. Based on CH4 reference measurements obtained with the SF6 tracer technique to determine ruminal CH4 production, a current equation permits evaluation of individual daily CH4 emissions of dairy cows based on milk Fourier transform mid-infrared (FT-MIR) spectra. However, the respiration chamber (RC) technique is considered to be more accurate than SF6 to measure CH4 production from cattle. This study aimed to develop an equation that allows estimating CH4 emissions of lactating cows recorded in an RC from corresponding milk FT-MIR spectra and to challenge its robustness and relevance through validation processes and its application on a milk spectral database. This would permit confirming the conclusions drawn with the existing equation based on SF6 reference measurements regarding the potential to estimate daily CH4 emissions of dairy cows from milk FT-MIR spectra. A total of 584 RC reference CH4 measurements (mean ± standard deviation of 400 ± 72 g of CH4/d) and corresponding standardized milk mid-infrared spectra were obtained from 148 individual lactating cows between 7 and 321 d in milk in 5 European countries (Germany, Switzerland, Denmark, France, and Northern Ireland). The developed equation based on RC measurements showed calibration and cross-validation coefficients of determination of 0.65 and 0.57, respectively, which is lower than those obtained earlier by the equation based on 532 SF6 measurements (0.74 and 0.70, respectively). This means that the RC-based model is unable to explain the variability observed in the corresponding reference data as well as the SF6-based model. The standard errors of calibration and cross-validation were lower for the RC model (43 and 47 g/d vs. 66 and 70 g/d for the SF6 version, respectively), indicating that the model based on RC data was closer to actual values. The root mean squared error (RMSE) of calibration of 42 g/d represents only 10% of the overall daily CH4 production, which is 23 g/d lower than the RMSE for the SF6-based equation. During the external validation step an RMSE of 62 g/d was observed. When the RC equation was applied to a standardized spectral database of milk recordings collected in the Walloon region of Belgium between January 2012 and December 2017 (1,515,137 spectra from 132,658 lactating cows in 1,176 different herds), an average ± standard deviation of 446 ± 51 g of CH4/d was estimated, which is consistent with the range of the values measured using both RC and SF6 techniques. This study confirmed that milk FT-MIR spectra could be used as a potential proxy to estimate daily CH4 emissions from dairy cows provided that the variability to predict is covered by the model.
Book of Abstracts of the 68th Annual Meeting of the European Federation of Animal Science | 2017
Amélie Vanlierde; Nicolas Gengler; Hélène Soyeurt; Florian Grandl; Michael Kreuzer; Bjöern Kuhla; P. Lund; Dana Olijhoek; Conrad Ferris; Frédéric Dehareng
AIM Identify signals of fat deposition and adaptation through genome-wide scan of the Barbaresca fat-tail sheep. ANIMALS Barbaresca in an ancient Sicilian fat-tail sheep, highly endangered at present. Of the 35 000 heads of 1980, abour 1 300 are left nowadays in 20 flocks. The breed originated from crosses between Barbary sheep from North Africa and the Pinzirita breed at times of the Arab settling in Sicily (9th century). The breed is reared in a very restricted area in central Sicily on smalland medium-sized farms under a semi-extensive farming system. It is a dual-purpose breed: milk for cheese and meat. Barbaresca is one of the only two fat-tail sheep of Italy. METHODS Genotypic data were obtained with the OvineSNP50K array. Fst values of differentiation for 43072 markers were calculated in pairwise comparisons of Barbaresca with each of 13 Italian thin tail breeds. Fat-tail sheep still represent twenty-five percent of the world sheep population; they are predominant in pastoral, transhumant and low input systems. In Western countries and in high input systems they are generally endangered. Fat-tail sheep preserved genetic variability for functional adaptation. The identification of the genes with a role in the fat-tail phenotype contributes to the understanding of the physiology of fat deposition as well as the mechanisms of adaptation and is essential for maintaining future breeding options. Heritability estimates for the 1st litter size, pregnancy rate and whelping success were low (0.05-0.14) Grading size and quality had moderate heritability estimates 0.27 and 0.21, respectively Genetic correlations between animal grading size and fertility traits were unfavourable (from -0.15 to -0.53) Grading quality and guard hair coverage had antagonistic relationships with all the studied fertility traits (from -0.21 to -0.54) Genetic parameters of fertility and grading traits in Finnish blue foxTrabajo presentado al: 68th Annual Meeting of the European Federation of Animal Science (EAAP). (Tallin, Estonia. 28 agosto - 2 septiembre).Trabajo presentado al: 68th Annual Meeting of the European Federation of Animal Science (EAAP). (Tallin, Estonia. 28 agosto - 2 septiembre).
Journal of Animal Physiology and Animal Nutrition | 2018
Florian Grandl; Angela Schwarm; Sylvia Ortmann; M. Furger; Michael Kreuzer; Marcus Clauss
Animal | 2018
Florian Grandl; M. Furger; Michael Kreuzer; M. Zehetmeier
Archive | 2017
Thomas Denninger; Angela Schwarm; Svenja Marquardt; F. Dohme-Meier; Andreas Münger; Marcus Clauss; Stefan Neuenschwander; Florian Grandl; Birgit Gredler; Jürg Moll; Michael Kreuzer