Florian I. Schmidt
ETH Zurich
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Florian I. Schmidt.
Journal of Virology | 2006
Koyu Hara; Florian I. Schmidt; Mandy Crow; George G. Brownlee
ABSTRACT The RNA-dependent RNA polymerase of influenza virus is a heterotrimer formed by the PB1, PB2, and PA subunits. Although PA is known to be required for polymerase activity, its precise role is still unclear. Here, we investigated the function of the N-terminal region of PA. Protease digestion of purified recombinant influenza virus A/PR/8/34 PA initially suggested that its N-terminal region is folded into a 25-kDa domain. We then systematically introduced point mutations into evolutionarily conserved amino acids in the N-terminal region of influenza virus A/WSN/33. Most alanine-scanning mutations between residues L109 and F117 caused PA degradation, mediated by a proteasome-ubiquitin pathway, and as a consequence interfered with polymerase activity. Three further PA mutations, K102A, D108A, and K134A, were investigated in detail. Mutation K102A caused a general decrease both in transcription and replication in vivo, whereas mutations D108A and K134A selectively inhibited transcription. Both the D108A and K134A mutations completely inhibited endonuclease activity in vitro, explaining their selective defect in transcription. K102A, on the other hand, resulted in a significant decrease in both cap binding and viral RNA promoter-binding activity and consequently inhibited both transcription and replication. These results suggest that the N-terminal region of PA is involved in multiple functions of the polymerase, including protein stability, endonuclease activity, cap binding, and promoter binding.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Jason Mercer; Stephan Knébel; Florian I. Schmidt; Josh Crouse; Christine Burkard; Ari Helenius
To enter host cells, vaccinia virus, a prototype poxvirus, can induce transient macropinocytosis followed by endocytic internalization and penetration through the limiting membrane of pinosomes by membrane fusion. Although mature virions (MVs) of the Western reserve (WR) strain do this in HeLa cells by activating transient plasma membrane blebbing, MVs from the International Health Department-J strain were found to induce rapid formation (and lengthening) of filopodia. When the signaling pathways underlying these responses were compared, differences were observed at the level of Rho GTPases. Key to the filopodial formation was the virus-induced activation of Cdc42, and for the blebbing response the activation of Rac1. In addition, unlike WR, International Health Department-J MVs did not rely on genistein-sensitive tyrosine kinase and PI(3)K activities. Only WR MVs had membrane fusion activity at low pH. Inhibitor profiling showed that MVs from both strains entered cells by macropinocytosis and that this was induced by virion-exposed phosphatidylserine. Both MVs relied on the activation of epidermal growth factor receptor, on serine/threonine kinases, protein kinase C, and p21-activated kinase 1. The results showed that different strains of the same virus can elicit dramatically different responses in host cells during entry, and that different macropinocytic mechanisms are possible in the same cell line through subtle differences in the activating ligand.
The EMBO Journal | 2011
Florian I. Schmidt; Christopher Karl Ernst Bleck; Ari Helenius; Jason Mercer
Vaccinia virus (VACV), the model poxvirus, produces two types of infectious particles: mature virions (MVs) and extracellular virions (EVs). EV particles possess two membranes and therefore require an unusual cellular entry mechanism. By a combination of fluorescence and electron microscopy as well as flow cytometry, we investigated the cellular processes that EVs required to infect HeLa cells. We found that EV particles were endocytosed, and that internalization and infection depended on actin rearrangements, activity of Na+/H+ exchangers, and signalling events typical for the macropinocytic mechanism of endocytosis. To promote their internalization, EVs were capable of actively triggering macropinocytosis. EV infection also required vacuolar acidification, and acid exposure in endocytic vacuoles was needed to disrupt the outer EV membrane. Once exposed, the underlying MV‐like particle presumably fused its single membrane with the limiting vacuolar membrane. Release of the viral core into the host cell cytosol allowed for productive infection.
Current Opinion in Virology | 2012
Florian I. Schmidt; Christopher Karl Ernst Bleck; Jason Mercer
Poxviruses are characterized by their large size, complex composition, and cytoplasmic life cycle. They produce two types of infectious particles: mature virions (MVs) and extracellular virions (EVs). Both MVs and EVs of vaccinia virus, the model poxvirus, take advantage of host cell endocytosis for internalization: they activate macropinocytosis-the most suitable form of endocytosis for large particles. Although largely dependent on the same cellular machinery, MV and EV entry differs with regard to the mechanisms used to trigger macropinocytosis and to undergo fusion. While EVs have to shed an additional membrane to expose the fusion complex, MV fusion requires the inactivation of fusion inhibitory proteins absent in EVs. This review highlights recent advances in the understanding of poxvirus MV and EV cell entry.
Cell Reports | 2013
Florian I. Schmidt; Christopher Karl Ernst Bleck; Lucia Reh; Karel Novy; Bernd Wollscheid; Ari Helenius; Henning Stahlberg; Jason Mercer
Host cell entry of vaccinia virus, the prototypic poxvirus, involves a membrane fusion event delivering the viral core and two proteinaceous lateral bodies (LBs) into the cytosol. Uncoating of viral cores is poorly characterized, and the composition and function of LBs remains enigmatic. We found that cytosolic cores rapidly dissociated from LBs and expanded in volume, which coincided with reduction of disulfide-bonded core proteins. We identified the abundant phosphoprotein F17, the dual-specificity phosphatase VH1, and the oxidoreductase G4 as bona fide LB components. After reaching the cytosol, F17 was degraded in a proteasome-dependent manner. Proteasome activity, and presumably LB disassembly, was required for the immediate immunomodulatory activity of VH1: dephosphorylation of STAT1 to prevent interferon-γ-mediated antiviral responses. These results reveal a mechanism used by poxviruses to deliver viral enzymes to the host cell cytosol and are likely to facilitate the identification of additional LB-resident viral effectors.
Journal of Experimental Medicine | 2016
Florian I. Schmidt; Alvin Lu; Jeff Chen; Jianbin Ruan; Catherine Tang; Hao Wu; Hidde L. Ploegh
Ploegh et al. raised an alpaca single-domain antibody (VHH) against the inflammasome adaptor ASC. VHHASC blocks inflammasome activation in vitro and in living cells, and demonstrates a role of the ASC CARD domain in cross-linking ASC Pyrin domain filaments.
Nano Letters | 2012
Philipp Stiefel; Florian I. Schmidt; Pablo Dörig; Pascal Behr; Tomaso Zambelli; Julia A. Vorholt; Jason Mercer
The mechanisms used by viruses to enter and replicate within host cells are subjects of intense investigation. These studies are ultimately aimed at development of new drugs that interfere with these processes. Virus entry and infection are generally monitored by dispensing bulk virus suspensions on layers of cells without accounting for the fate of each virion. Here, we take advantage of the recently developed FluidFM to deposit single vaccinia virions onto individual cells in a controlled manner. While the majority of virions were blocked prior to early gene expression, infection of individual cells increased in a nondeterministic fashion with respect to the number of viruses placed. Microscopic analyses of several stages of the virus lifecycle indicated that this was the result of cooperativity between virions during early stages of infection. These findings highlight the importance of performing controlled virus infection experiments at the single cell level.
Cell Host & Microbe | 2014
Samuel Kilcher; Florian I. Schmidt; Christoph Schneider; Manfred Kopf; Ari Helenius; Jason Mercer
Poxvirus genome uncoating is a two-step process. First, cytoplasmic viral cores are activated and early viral genes are expressed. Next, cores are disassembled and the genomes released. This second step depends on an early viral factor(s) that has eluded identification for over 40 years. We used a large-scale, high-throughput RNAi screen directed against vaccinia virus (VACV) to identify the VACV AAA+ ATPase D5 as the poxvirus uncoating factor. We show that the ATPase activity of D5 is required for uncoating. Superresolution microscopy suggests that D5 acts directly at viral cores for genome release. Thus, the putative helicase D5 is a multifunctional protein required for genome uncoating and replication. Additionally, in vivo delivery of anti-D5 siRNAs reduced virus production in a mouse model of VACV infection. These results demonstrate the use of virus-targeting RNAi libraries to investigate viral gene function and suggest therapeutic avenues.
Nature Structural & Molecular Biology | 2016
Alvin Lu; Yang Li; Florian I. Schmidt; Qian Yin; Shuobing Chen; Tian-Min Fu; Alexander B. Tong; Hidde L. Ploegh; Youdong Mao; Hao Wu
Inflammasomes are cytosolic caspase-1-activation complexes that sense intrinsic and extrinsic danger signals, and trigger inflammatory responses and pyroptotic cell death. Homotypic interactions among Pyrin domains and caspase recruitment domains (CARDs) in inflammasome-complex components mediate oligomerization into filamentous assemblies. Several cytosolic proteins consisting of only interaction domains exert inhibitory effects on inflammasome assembly. In this study, we determined the structure of the human caspase-1 CARD domain (caspase-1CARD) filament by cryo-electron microscopy and investigated the biophysical properties of two caspase-1-like CARD-only proteins: human inhibitor of CARD (INCA or CARD17) and ICEBERG (CARD18). Our results reveal that INCA caps caspase-1 filaments, thereby exerting potent inhibition with low-nanomolar Ki on caspase-1CARD polymerization in vitro and inflammasome activation in cells. Whereas caspase-1CARD uses six complementary surfaces of three types for filament assembly, INCA is defective in two of the six interfaces and thus terminates the caspase-1 filament.
Integrative Biology | 2012
Phillip Kuhn; Klaus Eyer; Tom Robinson; Florian I. Schmidt; Jason Mercer; Petra S. Dittrich
Immobilisation of liposomes and cells is often a prerequisite for long-term observations. The most common immobilisation approaches rely on surface modifications, encapsulation in porous materials or trapping in microfluidic channels by means of hurdle-like structures. While these approaches are useful for larger mammalian cells, the immobilisation of smaller organisms like bacteria and yeast or membrane model systems such as liposomes typically requires modification of their outer membrane to ensure that they are stably arrested at a defined position. Here, we present a protocol to immobilise biological objects, which can interact with hydrophobic cholesterol. A water-soluble molecule (cholesterol-PEG-biotin) is used as a linker, which can bind via avidin to biotinylated BSA (bBSA) previously absorbed on a glass surface. For better visualization, bBSA is arranged in a dot pattern by means of microcontact printing, and a microfluidic channel is used for sample supply. We show that our approach can be used to successfully immobilise artificial liposomes of different sizes, native (cell-derived) vesicles, vaccinia virions, Saccharomyces cerevisiae and Escherichia coli, simply by flushing the objects through the channel. Under these conditions, small liposomes and biological objects are stably arrested at high flow rates, while larger cells and liposomes can be released again by application of high shear stress. This protocol can be applied for long-term studies where fluids must be changed repeatedly, for measuring fast kinetics where rapid fluid exchange is essential, and to study the effects of shear stress.