Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Florian Kessler is active.

Publication


Featured researches published by Florian Kessler.


Journal of the American Chemical Society | 2011

Tris(2-(1H-pyrazol-1-yl)pyridine)cobalt(III) as p-Type Dopant for Organic Semiconductors and Its Application in Highly Efficient Solid-State Dye-Sensitized Solar Cells

Julian Burschka; Amalie Dualeh; Florian Kessler; Etienne Baranoff; Ngoc-Le Cevey-Ha; Chenyi Yi; Mohammad Khaja Nazeeruddin; Michael Grätzel

Chemical doping is an important strategy to alter the charge-transport properties of both molecular and polymeric organic semiconductors that find widespread application in organic electronic devices. We report on the use of a new class of Co(III) complexes as p-type dopants for triarylamine-based hole conductors such as spiro-MeOTAD and their application in solid-state dye-sensitized solar cells (ssDSCs). We show that the proposed compounds fulfill the requirements for this application and that the discussed strategy is promising for tuning the conductivity of spiro-MeOTAD in ssDSCs, without having to rely on the commonly employed photo-doping. By using a recently developed high molar extinction coefficient organic D-π-A sensitizer and p-doped spiro-MeOTAD as hole conductor, we achieved a record power conversion efficiency of 7.2%, measured under standard solar conditions (AM1.5G, 100 mW cm(-2)). We expect these promising new dopants to find widespread applications in organic electronics in general and photovoltaics in particular.


Nature Communications | 2012

A cobalt complex redox shuttle for dye-sensitized solar cells with high open-circuit potentials

Jun-Ho Yum; Etienne Baranoff; Florian Kessler; Thomas Moehl; Shahzada Ahmad; Takeru Bessho; Arianna Marchioro; Elham Ghadiri; Jacques-E. Moser; Chenyi Yi; Md. K. Nazeeruddin; Michael Grätzel

Dye-sensitized solar cells are a promising alternative to traditional inorganic semiconductor-based solar cells. Here we report an open-circuit voltage of over 1,000 mV in mesoscopic dye-sensitized solar cells incorporating a molecularly engineered cobalt complex as redox mediator. Cobalt complexes have negligible absorption in the visible region of the solar spectrum, and their redox properties can be tuned in a controlled fashion by selecting suitable donor/acceptor substituents on the ligand. This approach offers an attractive alternate to the traditional I3−/I− redox shuttle used in dye-sensitized solar cells. A cobalt complex using tridendate ligands [Co(bpy-pz)2]3+/2+(PF6)3/2 as redox mediator in combination with a cyclopentadithiophene-bridged donor-acceptor dye (Y123), adsorbed on TiO2, yielded a power conversion efficiency of over 10% at 100 mW cm−2. This result indicates that the molecularly engineered cobalt redox shuttle is a legitimate alternative to the commonly used I3−/I− redox shuttle.


Journal of the American Chemical Society | 2012

Cobalt Electrolyte/Dye Interactions in Dye-Sensitized Solar Cells: A Combined Computational and Experimental Study

Edoardo Mosconi; Jun-Ho Yum; Florian Kessler; Carlos J. Gómez García; Cristiano Zuccaccia; Antonio Cinti; Mohammad Khaja Nazeeruddin; Michael Grätzel; Filippo De Angelis

We report a combined experimental and computational investigation to understand the nature of the interactions between cobalt redox mediators and TiO(2) surfaces sensitized by ruthenium and organic dyes, and their impact on the performance of the corresponding dye-sensitized solar cells (DSSCs). We focus on different ruthenium dyes and fully organic dyes, to understand the dramatic loss of efficiency observed for the prototype Ru(II) N719 dye in conjunction with cobalt electrolytes. Both N719- and Z907-based DSSCs showed an increased lifetime in iodine-based electrolyte compared to the cobalt-based redox shuttle, while the organic D21L6 and D25L6 dyes, endowed with long alkoxy chains, show no significant change in the electron lifetime regardless of employed electrolyte and deliver a high photovoltaic efficiency of 6.5% with a cobalt electrolyte. Ab initio molecular dynamics simulations show the formation of a complex between the cobalt electrolyte and the surface-adsorbed ruthenium dye, which brings the [Co(bpy)(3)](3+) species into contact with the TiO(2) surface. This translates into a high probability of intercepting TiO(2)-injected electrons by the oxidized [Co(bpy)(3)](3+) species, lying close to the N719-sensitized TiO(2) surface. Investigation of the dye regeneration mechanism by the cobalt electrolyte in the Marcus theory framework led to substantially different reorganization energies for the high-spin (HS) and low-spin (LS) reaction pathways. Our calculated reorganization energies for the LS pathways are in excellent agreement with recent data for a series of cobalt complexes, lending support to the proposed regeneration pathway. Finally, we systematically investigate a series of Co(II)/Co(III) complexes to gauge the impact of ligand substitution and of metal coordination (tris-bidentate vs bis-tridentate) on the HS/LS energy difference and reorganization energies. Our results allow us to trace structure/property relations required for further development of cobalt electrolytes for DSSCs.


Energy and Environmental Science | 2011

Influence of the interfacial charge-transfer resistance at the counter electrode in dye-sensitized solar cells employing cobalt redox shuttles

Hoi Nok Tsao; Julian Burschka; Chenyi Yi; Florian Kessler; Mohammad Khaja Nazeeruddin; Michael Grätzel

We highlight the effect of the interfacial charge-transfer resistance at the counter electrode in dye-sensitized solar cells based on two cobalt redox shuttles, namely cobalt(III/II) tris(2,2′-bipyridine) and cobalt(III/II) tris(1,10-phenanthroline). Highly porous counter electrodes based on poly(3,4-ethylenedioxythiophene) (PEDOT) prepared by electro-oxidative polymerization are compared to the typically employed platinized FTO glass, with the former showing much lower charge transfer resistances for both cobalt complexes, leading to improved fill factors and to linear response of the short circuit photo-current density to light intensity up to one sun. Based on these findings, an excellent power conversion efficiency of 10.3% was achieved with a recently reported organic sensitizer and PEDOT as counter electrode.


Nano Letters | 2012

Subnanometer Ga2O3 Tunnelling Layer by Atomic Layer Deposition to Achieve 1.1 V Open-Circuit Potential in Dye-Sensitized Solar Cells

Aravind Kumar Chandiran; Nicolas Tétreault; Robin Humphry-Baker; Florian Kessler; Etienne Baranoff; Chenyi Yi; Mohammad Khaja Nazeeruddin; Michael Grätzel

Herein, we present the first use of a gallium oxide tunnelling layer to significantly reduce electron recombination in dye-sensitized solar cells (DSC). The subnanometer coating is achieved using atomic layer deposition (ALD) and leading to a new DSC record open-circuit potential of 1.1 V with state-of-the-art organic D-π-A sensitizer and cobalt redox mediator. After ALD of only a few angstroms of Ga(2)O(3), the electron back reaction is reduced by more than an order of magnitude, while charge collection efficiency and fill factor are increased by 30% and 15%, respectively. The photogenerated exciton separation processes of electron injection into the TiO(2) conduction band and the hole injection into the electrolyte are characterized in detail.


Inorganic Chemistry | 2012

Acid-induced degradation of phosphorescent dopants for OLEDs and its application to the synthesis of tris-heteroleptic iridium(III) bis-cyclometalated complexes.

Etienne Baranoff; Basile F. E. Curchod; Julien Frey; Rosario Scopelliti; Florian Kessler; Ivano Tavernelli; Ursula Rothlisberger; Michael Grätzel; Khaja Nazeeruddin

Investigations of blue phosphorescent organic light emitting diodes (OLEDs) based on [Ir(2-(2,4-difluorophenyl)pyridine)(2)(picolinate)] (FIrPic) have pointed to the cleavage of the picolinate as a possible reason for device instability. We reproduced the loss of picolinate and acetylacetonate ancillary ligands in solution by the addition of Brønsted or Lewis acids. When hydrochloric acid is added to a solution of a [Ir(C^N)(2)(X^O)] complex (C^N = 2-phenylpyridine (ppy) or 2-(2,4-difluorophenyl)pyridine (diFppy) and X^O = picolinate (pic) or acetylacetonate (acac)), the cleavage of the ancillary ligand results in the direct formation of the chloro-bridged iridium(III) dimer [{Ir(C^N)(2)(μ-Cl)}(2)]. When triflic acid or boron trifluoride are used, a source of chloride (here tetrabutylammonium chloride) is added to obtain the same chloro-bridged iridium(III) dimer. Then, we advantageously used this degradation reaction for the efficient synthesis of tris-heteroleptic cyclometalated iridium(III) complexes [Ir(C^N(1))(C^N(2))(L)], a family of cyclometalated complexes otherwise challenging to prepare. We used an iridium(I) complex, [{Ir(COD)(μ-Cl)}(2)], and a stoichiometric amount of two different C^N ligands (C^N(1) = ppy; C^N(2) = diFppy) as starting materials for the swift preparation of the chloro-bridged iridium(III) dimers. After reacting the mixture with acetylacetonate and subsequent purification, the tris-heteroleptic complex [Ir(ppy)(diFppy)(acac)] could be isolated with good yield from the crude containing as well the bis-heteroleptic complexes [Ir(ppy)(2)(acac)] and [Ir(diFppy)(2)(acac)]. Reaction of the tris-heteroleptic acac complex with hydrochloric acid gives pure heteroleptic chloro-bridged iridium dimer [{Ir(ppy)(diFppy)(μ-Cl)}(2)], which can be used as starting material for the preparation of a new tris-heteroleptic iridium(III) complex based on these two C^N ligands. Finally, we use DFT/LR-TDDFT to rationalize the impact of the two different C^N ligands on the observed photophysical and electrochemical properties.


Physical Chemistry Chemical Physics | 2013

Regeneration and recombination kinetics in cobalt polypyridine based dye-sensitized solar cells, explained using Marcus theory

Sandra M. Feldt; Peter W. Lohse; Florian Kessler; Mohammed K. Nazeeruddin; Michael Grätzel; Gerrit Boschloo; Anders Hagfeldt

Regeneration and recombination kinetics was investigated for dye-sensitized solar cells (DSCs) using a series of different cobalt polypyridine redox couples, with redox potentials ranging between 0.34 and 1.20 V vs. NHE. Marcus theory was applied to explain the rate of electron transfer. The regeneration kinetics for a number of different dyes (L0, D35, Y123, Z907) by most of the cobalt redox shuttles investigated occurred in the Marcus normal region. The calculated reorganization energies for the regeneration reaction ranged between 0.59 and 0.70 eV for the different organic and organometallic dyes investigated. Under the experimental conditions employed, the regeneration efficiency decreased when cobalt complexes with a driving force for regeneration of 0.4 eV and less were employed. The regeneration efficiency was found to depend on the structure of the dye and the concentration of the redox couples. [Co(bpy-pz)2](2+), which has a driving force for regeneration of 0.25 eV for the triphenylamine based organic dye, D35, was found to regenerate 84% of the dye molecules, when a high concentration of the cobalt complex was used. Recombination kinetics between electrons in TiO2 and cobalt(iii) species in the electrolyte was also studied using steady state dark current measurements. For cobalt complexes with highly positive redox potentials (>0.55 V vs. NHE) dark current was found to decrease, consistent with electron transfer reactions occurring in the Marcus inverted region. However, for the cobalt complexes with the most positive redox potentials an increase in dark current was found, which can be attributed to recombination mediated by surface states.


Journal of Materials Chemistry C | 2013

High-performance pure blue phosphorescent OLED using a novel bis-heteroleptic iridium(III) complex with fluorinated bipyridyl ligands

Florian Kessler; Yuichiro Watanabe; Hisahiro Sasabe; Hiroshi Katagiri; Md. K. Nazeeruddin; Michael Grätzel; Junji Kido

A novel pure blue phosphorescent emitter FK306 with fluorinated bipyridyl ligands was developed. The Ip level was determined to be 6.3 eV by photoelectron yield spectroscopy (PYS) in the solid state. The photophysical properties of a FK306/mCP film were evaluated. An 11 wt% doped film showed a peak photoluminescence at 454 nm and a high photoluminescent quantum yield (ηPL) of 78 ± 1%. A transient PL decay curve exhibited almost single-exponential decay (98%) with the phosphorescence lifetime (τp) of 1.51 μs at room temperature. A blue OLED with a structure of [ITO (130 nm)/TAPC (40 nm)/FK306 11–20 wt% doped mCP (10 nm)/B3PyPB (50 nm)/LiF (0.5 nm)/Al (100 nm)] was fabricated and evaluated. A high power efficiency of over 30 lm W−1 and an external quantum efficiency of over 17% were observed. The CIE chromaticity diagram (x, y) was evaluated to be (0.16, 0.25), clearly indicating blue emission. These are the first decent performances using a blue emitter with bipyridyl ligands so far.


Journal of Materials Chemistry C | 2013

A deep-blue emitting charged bis-cyclometallated iridium(III) complex for light-emitting electrochemical cells

Sebastian Meier; Wiebke Sarfert; José M. Junquera-Hernández; Manuel Delgado; Daniel Tordera; Enrique Ortí; Henk J. Bolink; Florian Kessler; Rosario Scopelliti; Michael Grätzel; M. Khaja Nazeeruddin; Etienne Baranoff

We report here a new cationic bis-cyclometallated iridium(III) complex, 1, with deep-blue emission at 440 nm and its use in Light-emitting Electrochemical Cells (LECs). The design is based on the 2′,6′-difluoro-2,3′-bipyridine skeleton as the cyclometallating ligand and a bis-imidazolium carbene-type ancillary ligand. Furthermore, bulky tert-butyl substituents are used to limit the intermolecular interactions. LECs have been driven both at constant voltage (6 V) and constant current (2.5 mA cm−2). The performances are significantly improved with the latter method, resulting overall in one of the best reported greenish-blue LECs having fast response (17 s), light intensity over 100 cd m−2 and a reasonable efficiency of almost 5 cd A−1.


Inorganic Chemistry | 2015

Cationic Iridium(III) Complexes with Two Carbene-Based Cyclometalating Ligands: Cis Versus Trans Isomers

Filippo Monti; Maria Grazia I. La Placa; Nicola Armaroli; Rosario Scopelliti; Michael Grätzel; Mohammad Khaja Nazeeruddin; Florian Kessler

A series of cationic iridium(III) complexes with two carbene-based cyclometalating ligands and five different N^N bipyridine and 1,10-phenanthroline ancillary ligands is presented. For the first time--in the frame of a rarely studied class of bis(heteroleptic) iridium complexes with two carbene-based cyclometalating ligands--a pair of cis and trans isomers has been isolated. All complexes (trans-1-5 and cis-3) were characterized by (1)H NMR, (13)C NMR, (31)P NMR, and HRMS (ESI-TOF); in addition, crystal structures of cis-3 and trans-4 are reported and discussed. Cyclic voltammetric studies show that the whole series exhibits highly reversible oxidation and reduction processes, suggesting promising potential for optoelectronic applications. Ground-state DFT and TD-DFT calculations nicely predict the blue shift experimentally observed in the room-temperature absorption and emission spectra of cis-3, compared to the trans complexes. In CH3CN, cis-3 displays a 4-fold increase in photoluminescence quantum yield (PLQY) with respect to trans-3, as a consequence of drastically slower nonradiative rate constant. By contrast, at 77 K, the emission properties of all the compounds, including the cis isomer, are much more similar, with a pronounced hypsochromic shift for the trans complexes. A similar behavior is found in solid state (1% w/w poly(methyl methacrylate) matrix), with all complexes displaying PLQY of ∼70-80%, comparable emission lifetimes (τ ≈ 1.3 μs), and a remarkable rigidochromic shift. To rationalize the more pronounced nonradiative deactivation (and smaller PLQY) observed for photoexcited trans complexes, comparative temperature-dependent emission studies in the range of 77-450 K for cis-3 and trans-3 were made in propylene glycol, showing that solvation effects are primarily responsible for the observed behavior.

Collaboration


Dive into the Florian Kessler's collaboration.

Top Co-Authors

Avatar

Michael Grätzel

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Etienne Baranoff

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Etienne Baranoff

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Chenyi Yi

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Julian Burschka

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Jun-Ho Yum

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Md. K. Nazeeruddin

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Rosario Scopelliti

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge