Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Florian Klemm is active.

Publication


Featured researches published by Florian Klemm.


Journal of Immunology | 2005

Macrophages Induce Invasiveness of Epithelial Cancer Cells Via NF-κB and JNK

Thorsten Hagemann; Julia Wilson; Hagen Kulbe; Ningfeng Fiona Li; David A. Leinster; Kellie A. Charles; Florian Klemm; Tobias Pukrop; Claudia Binder; Frances R. Balkwill

Tumor-associated macrophages may influence tumor progression, angiogenesis and invasion. To investigate mechanisms by which macrophages interact with tumor cells, we developed an in vitro coculture model. Previously we reported that coculture enhanced invasiveness of the tumor cells in a TNF-α- and matrix metalloprotease-dependent manner. In this report, we studied intracellular signaling pathways and induction of inflammatory genes in malignant cells under the influence of macrophage coculture. We report that coculture of macrophages with ovarian or breast cancer cell lines led to TNF-α-dependent activation of JNK and NF-κB pathways in tumor cells, but not in benign immortalized epithelial cells. Tumor cells with increased JNK and NF-κB activity exhibited enhanced invasiveness. Inhibition of the NF-κB pathway by TNF-α neutralizing Abs, an NF-κB inhibitor, RNAi to RelA, or overexpression of IκB inhibited tumor cell invasiveness. Blockade of JNK also significantly reduced invasiveness, but blockade of p38 MAPK or p42 MAPK had no effect. Cocultured tumor cells were screened for the expression of 22 genes associated with inflammation and invasion that also contained an AP-1 and NF-κB binding site. EMMPRIN and MIF were up-regulated in cocultured tumor cells in a JNK- and NF-κB-dependent manner. Knocking down either MIF or EMMPRIN by RNAi in the tumor cells significantly reduced tumor cell invasiveness and matrix metalloprotease activity in the coculture supernatant. We conclude that TNF-α, via NF-κB, and JNK induces MIF and EMMPRIN in macrophage to tumor cell cocultures and this leads to increased invasive capacity of the tumor cells.


Glia | 2010

Microglia promote colonization of brain tissue by breast cancer cells in a Wnt-dependent way.

Tobias Pukrop; Faramarz Dehghani; Han-Ning Chuang; Raphaela Lohaus; Kathrin Bayanga; Stephan Heermann; Tommy Regen; Denise van Rossum; Florian Klemm; Matthias Schulz; Laila Siam; Anja Hoffmann; Lorenz Trümper; Christine Stadelmann; Ingo Bechmann; Uwe-Karsten Hanisch; Claudia Binder

Although there is increasing evidence that blood‐derived macrophages support tumor progression, it is still unclear whether specialized resident macrophages, such as brain microglia, also play a prominent role in metastasis formation. Here, we show that microglia enhance invasion and colonization of brain tissue by breast cancer cells, serving both as active transporters and guiding rails. This is antagonized by inactivation of microglia as well as by the Wnt inhibitor Dickkopf‐2. Proinvasive microglia demonstrate altered morphology, but neither upregulation of M2‐like cytokines nor differential gene expression. Bacterial lipopolysacharide shifts tumor‐educated microglia into a classical M1 phenotype, reduces their proinvasive function, and unmasks inflammatory and Wnt signaling as the most strongly regulated pathways. Histological findings in human brain metastases underline the significance of these results. In conclusion, microglia are critical for the successful colonization of the brain by epithelial cancer cells, suggesting inhibition of proinvasive microglia as a promising antimetastatic strategy.


Glia | 2013

Carcinoma cells misuse the host tissue damage response to invade the brain

Han-Ning Chuang; Denise van Rossum; Dirk Sieger; Laila Siam; Florian Klemm; Annalen Bleckmann; Michaela Bayerlová; Katja Farhat; Jörg Scheffel; Matthias Schulz; Faramarz Dehghani; Christine Stadelmann; Uwe-Karsten Hanisch; Claudia Binder; Tobias Pukrop

The metastatic colonization of the brain by carcinoma cells is still barely understood, in particular when considering interactions with the host tissue. The colonization comes with a substantial destruction of the surrounding host tissue. This leads to activation of damage responses by resident innate immune cells to protect, repair, and organize the wound healing, but may distract from tumoricidal actions. We recently demonstrated that microglia, innate immune cells of the CNS, assist carcinoma cell invasion. Here we report that this is a fatal side effect of a physiological damage response of the brain tissue. In a brain slice coculture model, contact with both benign and malignant epithelial cells induced a response by microglia and astrocytes comparable to that seen at the interface of human cerebral metastases. While the glial damage response intended to protect the brain from intrusion of benign epithelial cells by inducing apoptosis, it proved ineffective against various malignant cell types. They did not undergo apoptosis and actually exploited the local tissue reaction to invade instead. Gene expression and functional analyses revealed that the C‐X‐C chemokine receptor type 4 (CXCR4) and WNT signaling were involved in this process. Furthermore, CXCR4‐regulated microglia were recruited to sites of brain injury in a zebrafish model and CXCR4 was expressed in human stroke patients, suggesting a conserved role in damage responses to various types of brain injuries. Together, our findings point to a detrimental misuse of the glial damage response program by carcinoma cells resistant to glia‐induced apoptosis. GLIA 2013;61:1331–1346


Oncotarget | 2015

The metastatic infiltration at the metastasis/brain parenchyma-interface is very heterogeneous and has a significant impact on survival in a prospective study

Laila Siam; Annalen Bleckmann; Han-Ning Chaung; Alexander Mohr; Florian Klemm; Alonso Barrantes-Freer; Raquel Blazquez; Hendrik A. Wolff; Florian Lüke; Veit Rohde; Christine Stadelmann; Tobias Pukrop

The current approach to brain metastases resection is macroscopic removal of metastasis until reaching the glial pseudo-capsule (gross total resection (GTR)). However, autopsy studies demonstrated infiltrating metastatic cells into the parenchyma at the metastasis/brain parenchyma (M/BP)-interface. Aims/Methods: To analyze the astrocyte reaction and metastatic infiltration pattern at the M/BP-interface with an organotypic brain slice coculture system. Secondly, to evaluate the significance of infiltrating metastatic tumor cells in a prospective biopsy study. Therefore, after GTR, biopsies were obtained from the brain parenchyma beyond the glial pseudo-capsule and analyzed histomorphologically. Results: The coculture revealed three types of cancer cell infiltration. Interestingly, the astrocyte reaction was significantly different in the coculture with a benign, neuroectodermal-derived cell line. In the prospective biopsy study 58/167 (34.7%) samples revealed infiltrating metastatic cells. Altogether, 25/39 patients (64.1%) had proven to exhibit infiltration in at least one biopsy specimen with significant impact on survival (OS) (3.4 HR; p = 0.009; 2-year OS was 6.6% versus 43.5%). Exceptionally, in the non-infiltrating cohort three patients were long-term survivors. Conclusions: Metastatic infiltration has a significant impact on prognosis. Secondly, the astrocyte reaction at the M/BP-interface is heterogeneous and supports our previous concept of the organ-specific defense against metastatic (organ-foreign) cells.


Journal of Visualized Experiments | 2014

Isolation of Human Monocytes by Double Gradient Centrifugation and Their Differentiation to Macrophages in Teflon-coated Cell Culture Bags

Kerstin Menck; Daniel Behme; Mathias Pantke; Norbert Reiling; Claudia Binder; Tobias Pukrop; Florian Klemm

Human macrophages are involved in a plethora of pathologic processes ranging from infectious diseases to cancer. Thus they pose a valuable tool to understand the underlying mechanisms of these diseases. We therefore present a straightforward protocol for the isolation of human monocytes from buffy coats, followed by a differentiation procedure which results in high macrophage yields. The technique relies mostly on commonly available lab equipment and thus provides a cost and time effective way to obtain large quantities of human macrophages. Briefly, buffy coats from healthy blood donors are subjected to a double density gradient centrifugation to harvest monocytes from the peripheral blood. These monocytes are then cultured in fluorinated ethylene propylene (FEP) Teflon-coated cell culture bags in the presence of macrophage colony-stimulating factor (M-CSF). The differentiated macrophages can be easily harvested and used for subsequent studies and functional assays. Important methods for quality control and validation of the isolation and differentiation steps will be highlighted within the protocol. In summary, the protocol described here enables scientists to routinely and reproducibly isolate human macrophages without the need for cost intensive tools. Furthermore, disease models can be studied in a syngeneic human system circumventing the use of murine macrophages.


Bioinformatics | 2013

rBiopaxParser—an R package to parse, modify and visualize BioPAX data

Frank Kramer; Michaela Bayerlová; Florian Klemm; Annalen Bleckmann; Tim Beißbarth

MOTIVATION Biological pathway data, stored in structured databases, is a useful source of knowledge for a wide range of bioinformatics algorithms and tools. The Biological Pathway Exchange (BioPAX) language has been established as a standard to store and annotate pathway information. However, use of these data within statistical analyses can be tedious. On the other hand, the statistical computing environment R has become the standard for bioinformatics analysis of large-scale genomics data. With this package, we hope to enable R users to work with BioPAX data and make use of the always increasing amount of biological pathway knowledge within data analysis methods. RESULTS rBiopaxParser is a software package that provides a comprehensive set of functions for parsing, viewing and modifying BioPAX pathway data within R. These functions enable the user to access and modify specific parts of the BioPAX model. Furthermore, it allows to generate and layout regulatory graphs of controlling interactions and to visualize BioPAX pathways. AVAILABILITY rBiopaxParser is an open-source R package and has been submitted to Bioconductor.


BMC Bioinformatics | 2015

Comparative study on gene set and pathway topology-based enrichment methods.

Michaela Bayerlová; Klaus Jung; Frank Kramer; Florian Klemm; Annalen Bleckmann; Tim Beißbarth

BackgroundEnrichment analysis is a popular approach to identify pathways or sets of genes which are significantly enriched in the context of differentially expressed genes. The traditional gene set enrichment approach considers a pathway as a simple gene list disregarding any knowledge of gene or protein interactions. In contrast, the new group of so called pathway topology-based methods integrates the topological structure of a pathway into the analysis.MethodsWe comparatively investigated gene set and pathway topology-based enrichment approaches, considering three gene set and four topological methods. These methods were compared in two extensive simulation studies and on a benchmark of 36 real datasets, providing the same pathway input data for all methods. ResultsIn the benchmark data analysis both types of methods showed a comparable ability to detect enriched pathways. The first simulation study was conducted with KEGG pathways, which showed considerable gene overlaps between each other. In this study with original KEGG pathways, none of the topology-based methods outperformed the gene set approach. Therefore, a second simulation study was performed on non-overlapping pathways created by unique gene IDs. Here, methods accounting for pathway topology reached higher accuracy than the gene set methods, however their sensitivity was lower.ConclusionsWe conducted one of the first comprehensive comparative works on evaluating gene set against pathway topology-based enrichment methods. The topological methods showed better performance in the simulation scenarios with non-overlapping pathways, however, they were not conclusively better in the other scenarios. This suggests that simple gene set approach might be sufficient to detect an enriched pathway under realistic circumstances. Nevertheless, more extensive studies and further benchmark data are needed to systematically evaluate these methods and to assess what gain and cost pathway topology information introduces into enrichment analysis. Both types of methods for enrichment analysis require further improvements in order to deal with the problem of pathway overlaps.


Journal of extracellular vesicles | 2017

Characterisation of tumour-derived microvesicles in cancer patients’ blood and correlation with clinical outcome

Kerstin Menck; Annalen Bleckmann; Astrid Wachter; Bianca Hennies; Lena Ries; Matthias Schulz; Marko Balkenhol; Tobias Pukrop; Bawarjan Schatlo; Ulrike Rost; Dirk Wenzel; Florian Klemm; Claudia Binder

ABSTRACT To evaluate whether tumour-derived microvesicles (T-MV), originating from the plasma membrane, represent suitable cancer biomarkers, we isolated MV from peripheral blood samples of cancer patients with locally advanced and/or metastatic solid tumours (n = 330, including 79 head & neck cancers, 74 lung cancers, 41 breast cancers, 28 colorectal cancers and 108 with other cancer forms) and controls (n = 103). Whole MV preparations were characterised using flow cytometry. While MV carrying the tumour-associated proteins MUC1, EGFR and EpCAM were found to be enhanced in a tumour-subtype-specific way in patients’ blood, expression of the matrix metalloproteinase inducer EMMPRIN was increased independent of tumour type. Higher levels of EMMPRIN+-MV correlated significantly with poor overall survival, whereas the other markers were prognostic only in specific tumour subgroups. By combining all four tumour-associated antigens, cancer patients were separated from healthy controls with an AUC of up to 0.85. Ex vivo, whole MV preparations from cancer patients, in contrast to those of controls, induced a tumour-supporting phenotype in macrophages and increased tumour cell invasion, which was dependent on the highly glycosylated isoform of EMMPRIN. In conclusion, the detection of T-MV in whole blood, even in minor amounts, is feasible with standard techniques, proves functionally relevant and correlates with clinical outcome.


PLOS ONE | 2015

Newly Constructed Network Models of Different WNT Signaling Cascades Applied to Breast Cancer Expression Data

Michaela Bayerlová; Florian Klemm; Frank Kramer; Tobias Pukrop; Tim Beißbarth; Annalen Bleckmann

Introduction WNT signaling is a complex process comprising multiple pathways: the canonical β-catenin-dependent pathway and several alternative non-canonical pathways that act in a β-catenin-independent manner. Representing these intricate signaling mechanisms through bioinformatic approaches is challenging. Nevertheless, a simplified but reliable bioinformatic WNT pathway model is needed, which can be further utilized to decipher specific WNT activation states within e.g. high-throughput data. Results In order to build such a model, we collected, parsed, and curated available WNT signaling knowledge from different pathway databases. The data were assembled to construct computationally suitable models of different WNT signaling cascades in the form of directed signaling graphs. This resulted in four networks representing canonical WNT signaling, non-canonical WNT signaling, the inhibition of canonical WNT signaling and the regulation of WNT signaling pathways, respectively. Furthermore, these networks were integrated with microarray and RNA sequencing data to gain deeper insight into the underlying biology of gene expression differences between MCF-7 and MDA-MB-231 breast cancer cell lines, representing weakly and highly invasive breast carcinomas, respectively. Differential genes up-regulated in the MDA-MB-231 compared to the MCF-7 cell line were found to display enrichment in the gene set originating from the non-canonical network. Moreover, we identified and validated differentially regulated modules representing canonical and non-canonical WNT pathway components specific for the aggressive basal-like breast cancer subtype. Conclusions In conclusion, we demonstrated that these newly constructed WNT networks reliably reflect distinct WNT signaling processes. Using transcriptomic data, we shaped these networks into comprehensive modules of the genes implicated in the aggressive basal-like breast cancer subtype and demonstrated that non-canonical WNT signaling is important in this context. The topology of these networks can be further refined in the future by integration with complementary data such as protein-protein interactions, in order to gain greater insight into signaling processes.


Molecular Oncology | 2015

Integrated miRNA and mRNA profiling of tumor-educated macrophages identifies prognostic subgroups in estrogen receptor-positive breast cancer

Annalen Bleckmann; Andreas Leha; Stephan Artmann; Kerstin Menck; Gabriela Salinas-Riester; Claudia Binder; Tobias Pukrop; Tim Beissbarth; Florian Klemm

Various studies have identified aberrantly expressed miRNAs in breast cancer and demonstrated an association between distinct miRNAs and malignant progression as well as metastasis. Even though tumor‐associated macrophages (TAM) are known mediators of these processes, little is known regarding their miRNA expression upon education by malignant cells in vivo.

Collaboration


Dive into the Florian Klemm's collaboration.

Top Co-Authors

Avatar

Tobias Pukrop

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudia Binder

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Kerstin Menck

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Frank Kramer

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tim Beißbarth

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laila Siam

University of Göttingen

View shared research outputs
Researchain Logo
Decentralizing Knowledge