Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Florian M. Wisser is active.

Publication


Featured researches published by Florian M. Wisser.


Angewandte Chemie | 2012

An Energy Storage Principle using Bipolar Porous Polymeric Frameworks

Ken Sakaushi; Georg Nickerl; Florian M. Wisser; Daisuke Nishio-Hamane; Eiji Hosono; Haoshen Zhou; Stefan Kaskel; J. Eckert

Packed with energy: Amorphous covalent triazine-based frameworks were used as a cathode material, with the aim of developing an energy storage principle that can deliver a 2-3 times higher specific energy than current batteries with a high rate capability. The material undergoes a unique Faradaic reaction, as it can be present in both a p-doped and an n-doped state (see picture).


ACS Nano | 2014

Stretchable and Semitransparent Conductive Hybrid Hydrogels for Flexible Supercapacitors

Guang-Ping Hao; Felix Hippauf; Martin Oschatz; Florian M. Wisser; Annika Leifert; Winfried Nickel; Nasser Mohamed-Noriega; Zhikun Zheng; Stefan Kaskel

Conductive polymers showing stretchable and transparent properties have received extensive attention due to their enormous potential in flexible electronic devices. Here, we demonstrate a facile and smart strategy for the preparation of structurally stretchable, electrically conductive, and optically semitransparent polyaniline-containing hybrid hydrogel networks as electrode, which show high-performances in supercapacitor application. Remarkably, the stability can extend up to 35,000 cycles at a high current density of 8 A/g, because of the combined structural advantages in terms of flexible polymer chains, highly interconnected pores, and excellent contact between the host and guest functional polymer phase.


Scientific Reports | 2016

High Area Capacity Lithium-Sulfur Full-cell Battery with Prelitiathed Silicon Nanowire-Carbon Anodes for Long Cycling Stability

Andreas Krause; Susanne Dörfler; Markus Piwko; Florian M. Wisser; Tony Jaumann; Eike Ahrens; Lars Giebeler; Holger Althues; Stefan Schädlich; Julia Grothe; Andrea Jeffery; Matthias Grube; Jan Brückner; Jan Märtin; J. Eckert; Stefan Kaskel; Thomas Mikolajick; Walter M. Weber

We show full Li/S cells with the use of balanced and high capacity electrodes to address high power electro-mobile applications. The anode is made of an assembly comprising of silicon nanowires as active material densely and conformally grown on a 3D carbon mesh as a light-weight current collector, offering extremely high areal capacity for reversible Li storage of up to 9 mAh/cm2. The dense growth is guaranteed by a versatile Au precursor developed for homogenous Au layer deposition on 3D substrates. In contrast to metallic Li, the presented system exhibits superior characteristics as an anode in Li/S batteries such as safe operation, long cycle life and easy handling. These anodes are combined with high area density S/C composite cathodes into a Li/S full-cell with an ether- and lithium triflate-based electrolyte for high ionic conductivity. The result is a highly cyclable full-cell with an areal capacity of 2.3 mAh/cm2, a cyclability surpassing 450 cycles and capacity retention of 80% after 150 cycles (capacity loss <0.4% per cycle). A detailed physical and electrochemical investigation of the SiNW Li/S full-cell including in-operando synchrotron X-ray diffraction measurements reveals that the lower degradation is due to a lower self-reduction of polysulfides after continuous charging/discharging.


Journal of Colloid and Interface Science | 2013

Metal deposition by electroless plating on polydopamine functionalized micro- and nanoparticles

Giovanni Mondin; Florian M. Wisser; Annika Leifert; Nasser Mohamed-Noriega; Julia Grothe; Susanne Dörfler; Stefan Kaskel

A novel approach for the fabrication of metal coated micro- and nanoparticles by functionalization with a thin polydopamine layer followed by electroless plating is reported. The particles are initially coated with polydopamine via self-polymerization. The resulting polydopamine coated particles have a surface rich in catechols and amino groups, resulting in a high affinity toward metal ions. Thus, they provide an effective platform for selective electroless metal deposition without further activation and sensitization steps. The combination of a polydopamine-based functionalization with electroless plating ensures a simple, scalable, and cost-effective metal coating strategy. Silver-plated tungsten carbide microparticles, copper-plated tungsten carbide microparticles, and copper-plated alumina nanoparticles were successfully fabricated, showing also the high versatility of the method, since the polymerization of dopamine leads to the formation of an adherent polydopamine layer on the surface of particles of any material and size. The metal coated particles produced with this process are particularly well suited for the production of metal matrix composites, since the metal coating increases the wettability of the particles by the metal, promoting their integration within the matrix. Such composite materials are used in a variety of applications including electrical contacts, components for the automotive industries, magnets, and electromagnetic interference shielding.


Journal of Materials Chemistry C | 2015

Precursor strategies for metallic nano- and micropatterns using soft lithography†

Florian M. Wisser; Benjamin Schumm; Giovanni Mondin; Julia Grothe; Stefan Kaskel

Soft lithographic methods describe a set of printing methods which are widely used for the preparation of structured surfaces. Structured surfaces are essential components in the field of (opto-)electronic devices such as organic light emitting diodes, photovoltaics or organic field effect transistors. In recent years, crucial progress has been achieved in the development of patterned metal coatings for these applications. This review focusses on new strategies for soft lithographical printing of metal structures emphasizing the subtle interplay of printing techniques, metal precursor chemistry, and surface functionalization strategies.


Journal of Materials Chemistry C | 2013

Semi-transparent silver electrodes for flexible electronic devices prepared by nanoimprint lithography

Benjamin Schumm; Florian M. Wisser; Giovanni Mondin; Felix Hippauf; Julia Fritsch; Julia Grothe; Stefan Kaskel

The preparation of mechanically flexible and optically transparent electronic circuits plays a key role in the development of next-generation display technologies. Silver nano-gratings are of particular interest due to their excellent conductivity and adjustable transmittance. Printed on polymeric substrates they are suitable for an application in flexible opto-electronic devices. Here, we present the preparation of a smart silver precursor system combining both the ability of cheap and scalable nanoimprint patterning and simple thermal silver reduction. Homogeneous silver line and grid patterns with line widths down to 400 nm are prepared using poly(dimethylsiloxane) stamps in a thermal nanoimprint lithography process. Relatively low process temperatures allow the film formation on polymeric substrates. Semi-transparent silver electrodes with a resistance of 2.8 ohm are patterned on polyimide foils to prepare flexible electro-luminescence devices. A detailed investigation of the precursors thermal decomposition behaviour as well as the resulting electrical and optical properties of the films is offered.


Solid State Nuclear Magnetic Resonance | 2015

1H–13C–29Si triple resonance and REDOR solid-state NMR—A tool to study interactions between biosilica and organic molecules in diatom cell walls

Dorothea Wisser; Stephan I. Brückner; Florian M. Wisser; Gerhard Althoff-Ospelt; Jürgen Getzschmann; Stefan Kaskel; Eike Brunner

Triple resonance solid-state NMR experiments using the spin combination (1)H-(13)C-(29)Si are still rarely found in the literature. This is due to the low natural abundance of the two heteronuclei. Such experiments are, however, increasingly important to study hybrid materials such as biosilica and others. A suitable model substance, ideally labeled with both (13)C and (29)Si, is thus very useful to optimize the experiments before applying them to studies of more complex samples such as biosilica. Tetraphenoxysilane could be synthesized in an easy, two-step synthesis including double isotope labelling. Using tetraphenoxysilane, we established a (1)H-(13)C-(29)Si double CP-based HETCOR experiment and applied it to diatom biosilica from the diatom species Thalassiosira pseudonana. Furthermore, we carried out (1)H-(13)C{(29)Si} CP-REDOR experiments in order to estimate the distance between the organic matrix and the biosilica. Our experiments on diatom biosilica strongly indicate a close contact between polyamine-containing parts of the organic matrix and the silica. This corroborates the assumption that the organic matrix is essential for the control of the cell wall formation.


Journal of Colloid and Interface Science | 2012

Detection of surface silanol groups on pristine and functionalized silica mixed oxides and zirconia.

Florian M. Wisser; Matthias Abele; Matthias Gasthauer; Klaus Müller; Norbert Moszner; Guido Kickelbick

The surface hydroxyl content and surface structure of silica and other oxides with and without surface modification were systematically studied by solid state (29)Si NMR, thermogravimetric analysis, and the lithium alanate method. Aerosil 90 as a well described reference system and functionalized zirconia-silica particles were used in the validation of the lithium alanate method. 3-Methacryloxypropyltrimethoxysilane and dodecylphosphonic acid were applied as surface modifiers. The determination of silanol content of Aerosil 90 by (29)Si NMR and TGA confirms the results obtained by the lithium alanate method, which also allows for the determination of the remaining surface hydroxyl content after surface modification. For both silane coupling agents, the residual hydroxyl content of modified zirconia-silica is decreased by a factor of approximately 2 compared with that of the unmodified mixed oxide, whereas after modification with dodecylphosphonic acid, the hydroxyl content is slightly higher. These results are again in good agreement with those by (29)Si NMR confirming that the lithium alanate method is a reliable and easily practicable method for surface hydroxyl determination.


Journal of Materials Chemistry C | 2013

Preparation and microcontact printing of platinum and palladium thin films

Florian M. Wisser; Benjamin Schumm; Andreas Meier; Tom Engel; Julia Grothe; Guido Kickelbick; Stefan Kaskel

Thin palladium and platinum films were prepared using a polymeric precursor method. For the first time, down to 30 nm thick films were achieved by this method. A precursor solution consisting of ethylene glycol, citric acid, a metal salt and the corresponding acid was deposited by spin coating onto various substrates. The thermal decomposition behavior of these precursors was characterized by thermal analysis methods. Dried and calcined films were characterized by XRD, UV-Vis and IR spectroscopy as well as resistance measurements to get more information about the film formation. The specific resistance of the phase pure platinum films was as low as 1.1 × 10−7 Ω m and that of the palladium films was as low as 6.0 × 10−7 Ω m. In addition, a platinum precursor was used for microcontact printing. Regular line patterns with widths between 800 nm and 15 μm were achieved, as could be shown by AFM and SEM.


Inorganic Chemistry | 2017

Optical Sensors Using Solvatochromic Metal–Organic Frameworks

Philipp Müller; Florian M. Wisser; Pascal Freund; Volodymyr Bon; Irena Senkovska; Stefan Kaskel

A series of copper and 1,3-phenylebis(azanetriyl)tetrabenzoate based MOFs were obtained by postsynthetic modification of DUT-71 (DUT = Dresden University of Technology) using various nitrogen containing, neutral ligands to afford the compounds DUT-74, DUT-95, DUT-112, and DUT-114. The structure of the new MOFs DUT-112 and DUT-114 was solved from synchrotron X-ray single-crystal diffraction data. Both structures are tetragonal (P4/mnc) but differ slightly in the lattice parameters. All materials show specific shifts in absorption bands in solid state UV/vis spectra as a response to the exposure to various analytes. Analyzing this shift, it was possible to distinguish between solvents differing in polarity. Moreover, the determination of the polar analyte content in the excess of lower polarity solvent at low concentrations of 0.01 wt % is feasible.

Collaboration


Dive into the Florian M. Wisser's collaboration.

Top Co-Authors

Avatar

Stefan Kaskel

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Julia Grothe

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Giovanni Mondin

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Kai Eckhardt

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Susanne Dörfler

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Volodymyr Bon

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

J. Eckert

Austrian Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Annika Leifert

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Benjamin Schumm

Dresden University of Technology

View shared research outputs
Top Co-Authors

Avatar

Nasser Mohamed-Noriega

Dresden University of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge