Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Florian Nachon is active.

Publication


Featured researches published by Florian Nachon.


Journal of Biological Chemistry | 2003

Crystal structure of human butyrylcholinesterase and of its complexes with substrate and products.

Yvain Nicolet; Oksana Lockridge; Patrick Masson; Juan C. Fontecilla-Camps; Florian Nachon

Cholinesterases are among the most efficient enzymes known. They are divided into two groups: acetylcholinesterase, involved in the hydrolysis of the neurotransmitter acetylcholine, and butyrylcholinesterase of unknown function. Several crystal structures of the former have shown that the active site is located at the bottom of a deep and narrow gorge, raising the question of how substrate and products enter and leave. Human butyrylcholinesterase (BChE) has attracted attention because it can hydrolyze toxic esters such as cocaine or scavenge organophosphorus pesticides and nerve agents. Here we report the crystal structures of several recombinant truncated human BChE complexes and conjugates and provide a description for mechanistically relevant non-productive substrate and product binding. As expected, the structure of BChE is similar to a previously published theoretical model of this enzyme and to the structure of Torpedo acetylcholinesterase. The main difference between the experimentally determined BChE structure and its model is found at the acyl binding pocket that is significantly bigger than expected. An electron density peak close to the catalytic Ser198 has been modeled as bound butyrate.


Biochemical Journal | 2013

Crystal structures of human cholinesterases in complex with huprine W and tacrine: elements of specificity for anti-Alzheimer's drugs targeting acetyl- and butyryl-cholinesterase

Florian Nachon; Eugénie Carletti; Cyril Ronco; Marie Trovaslet; Yvain Nicolet; Ludovic Jean; Pierre-Yves Renard

The multifunctional nature of Alzheimers disease calls for MTDLs (multitarget-directed ligands) to act on different components of the pathology, like the cholinergic dysfunction and amyloid aggregation. Such MTDLs are usually on the basis of cholinesterase inhibitors (e.g. tacrine or huprine) coupled with another active molecule aimed at a different target. To aid in the design of these MTDLs, we report the crystal structures of hAChE (human acetylcholinesterase) in complex with FAS-2 (fasciculin 2) and a hydroxylated derivative of huprine (huprine W), and of hBChE (human butyrylcholinesterase) in complex with tacrine. Huprine W in hAChE and tacrine in hBChE reside in strikingly similar positions highlighting the conservation of key interactions, namely, π-π/cation-π interactions with Trp86 (Trp82), and hydrogen bonding with the main chain carbonyl of the catalytic histidine residue. Huprine W forms additional interactions with hAChE, which explains its superior affinity: the isoquinoline moiety is associated with a group of aromatic residues (Tyr337, Phe338 and Phe295 not present in hBChE) in addition to Trp86; the hydroxyl group is hydrogen bonded to both the catalytic serine residue and residues in the oxyanion hole; and the chlorine substituent is nested in a hydrophobic pocket interacting strongly with Trp439. There is no pocket in hBChE that is able to accommodate the chlorine substituent.


Chemico-Biological Interactions | 2013

Progress in the development of enzyme-based nerve agent bioscavengers

Florian Nachon; Xavier Brazzolotto; Marie Trovaslet; Patrick Masson

Acetylcholinesterase is the physiological target for acute toxicity of nerve agents. Attempts to protect acetylcholinesterase from phosphylation by nerve agents, is currently achieved by reversible inhibitors that transiently mask the enzyme active site. This approach either protects only peripheral acetylcholinesterase or may cause side effects. Thus, an alternative strategy consists in scavenging nerve agents in the bloodstream before they can reach acetylcholinesterase. Pre- or post-exposure administration of bioscavengers, enzymes that neutralize and detoxify organophosphorus molecules, is one of the major developments of new medical counter-measures. These enzymes act either as stoichiometric or catalytic bioscavengers. Human butyrylcholinesterase is the leading stoichiometric bioscavenger. Current efforts are devoted to its mass production with care to pharmacokinetic properties of the final product for extended lifetime. Development of specific reactivators of phosphylated butyrylcholinesterase, or variants with spontaneous reactivation activity is also envisioned for rapid in situ regeneration of the scavenger. Human paraoxonase 1 is the leading catalytic bioscavenger under development. Research efforts focus on improving its catalytic efficiency toward the most toxic isomers of nerve agents, by means of directed evolution-based strategies. Human prolidase appears to be another promising human enzyme. Other non-human efficient enzymes like bacterial phosphotriesterases or squid diisopropylfluorophosphatase are also considered though their intrinsic immunogenic properties remain challenging for use in humans. Encapsulation, PEGylation and other modifications are possible solutions to address this problem as well as that of their limited lifetime. Finally, gene therapy for in situ generation and delivery of bioscavengers is for the far future, but its proof of concept has been established.


Chemical Research in Toxicology | 2008

Binding and Hydrolysis of Soman by Human Serum Albumin

Bin Li; Florian Nachon; Marie Thérèse Froment; Laurent Verdier; Jean Claude Debouzy; Bernardo Brasme; Emilie Gillon; Lawrence M. Schopfer; Oksana Lockridge; Patrick Masson

Human plasma and fatty acid free human albumin were incubated with soman at pH 8.0 and 25 degrees C. Four methods were used to monitor the reaction of albumin with soman: progressive inhibition of the aryl acylamidase activity of albumin, the release of fluoride ion from soman, 31P NMR, and mass spectrometry. Inhibition (phosphonylation) was slow with a bimolecular rate constant of 15 +/- 3 M(-1) min (-1). MALDI-TOF and tandem mass spectrometry of the soman-albumin adduct showed that albumin was phosphonylated on tyrosine 411. No secondary dealkylation of the adduct (aging) occurred. Covalent docking simulations and 31P NMR experiments showed that albumin has no enantiomeric preference for the four stereoisomers of soman. Spontaneous reactivation at pH 8.0 and 25 degrees C, measured as regaining of aryl acylamidase activity and decrease of covalent adduct (pinacolyl methylphosphonylated albumin) by NMR, occurred at a rate of 0.0044 h (-1), indicating that the adduct is quite stable ( t1/2 = 6.5 days). At pH 7.4 and 22 degrees C, the covalent soman-albumin adduct, measured by MALDI-TOF mass spectrometry, was more stable ( t1/2 = 20 days). Though the concentration of albumin in plasma is very high (about 0.6 mM), its reactivity with soman (phosphonylation and phosphotriesterase activity) is too slow to play a major role in detoxification of the highly toxic organophosphorus compound soman. Increasing the bimolecular rate constant of albumin for organophosphates is a protein engineering challenge that could lead to a new class of bioscavengers to be used against poisoning by nerve agents. Soman-albumin adducts detected by mass spectrometry could be useful for the diagnosis of soman exposure.


Chemico-Biological Interactions | 2008

A collaborative endeavor to design cholinesterase-based catalytic scavengers against toxic organophosphorus esters.

Patrick Masson; Florian Nachon; Clarence A. Broomfield; David E. Lenz; Laurent Verdier; Lawrence M. Schopfer; Oksana Lockridge

Wild-type human butyrylcholinesterase (BuChE) has proven to be an efficient bioscavenger for protection against nerve agent toxicity. Human acetylcholinesterase (AChE) has a similar potential. A limitation to their usefulness is that both cholinesterases (ChEs) react stoichiometrically with organophosphosphorus (OP) esters. Because OPs can be regarded as pseudo-substrates for which the dephosphylation rate constant is almost zero, several strategies have been attempted to promote the dephosphylation reaction. Oxime-mediated reactivation of phosphylated ChEs generates a turnover, but it is too slow to make pseudo-catalytic scavengers of pharmacological interest. Alternatively, it was hypothesized that ChEs could be converted into OP hydrolases by using rational site-directed mutagenesis based upon the crystal structure of ChEs. The idea was to introduce a nucleophile into the oxyanion hole, at an appropriate position to promote hydrolysis of the phospho-serine bond via a base catalysis mechanism. Such mutants, if they showed the desired catalytic and pharmacokinetic properties, could be used as catalytic scavengers. The first mutant of human BuChE that was capable of hydrolyzing OPs was G117H. It had a slow rate. Crystallographic study of the G117H mutant showed that hydrolysis likely occurs by activation of a water molecule rather than direct nucleophilic attack by H117. Numerous BuChE mutants were made later, but none of them was better than the G117H mutant at hydrolyzing OPs, with the exception of soman. Soman aged too rapidly to be hydrolyzed by G117H. Hydrolysis was however accomplished with the double mutant G117H/E197Q, which did not age after phosphonylation with soman. Multiple mutations in the active center of human and Bungarus AChE led to enzymes displaying low catalytic activity towards OPs and unwanted kinetic complexities. A new generation of human AChE mutants has been designed with the assistance of molecular modelling and computational methods. According to the putative water-activation mechanism of G117H BChE, a new histidine/aspartate dyad was introduced into the active center of human AChE at the optimum location for hydrolysis of the OP adduct. Additional mutations were made for optimizing activity of the new dyad. It is anticipated that these new mutants will have OP hydrolase activity.


Protein and Peptide Letters | 2009

Structure, Activities and Biomedical Applications of Human Butyrylcholinesterase

Patrick Masson; Eugénie Carletti; Florian Nachon

Human butyrylcholinesterase (BuChE) is a serine enzyme present in most organs and plasma. No clear physiological function has yet been assigned to BuChE, but it is a pharmacologically and toxicologically important enzyme that plays a role in degradation of numerous ester-containing drugs and poisonous esters. Thus, BuChE-based bioscavengers are an alternative for prophylaxis and treatments of intoxications by these compounds. Also, BuChE has been integrated in biosensors for detection of organophosphorus compounds and other cholinesterase inhibitors.


Chemical Research in Toxicology | 2008

Five Tyrosines and Two Serines in Human Albumin Are Labeled by the Organophosphorus Agent FP-Biotin

Shi Jian Ding; John Carr; James E. Carlson; Weihua Xue; Yifeng Li; Lawrence M. Schopfer; Bin Li; Florian Nachon; Oluwatoyin A. Asojo; Charles M. Thompson; Steven H. Hinrichs; Patrick Masson; Oksana Lockridge

Tyrosine 411 of human albumin is an established site for covalent attachment of 10-fluoroethoxyphosphinyl-N-biotinamidopentyldecanamide (FP-biotin), diisopropylfluorophosphate, chlorpyrifos oxon, soman, sarin, and dichlorvos. This work investigated the hypothesis that other residues in albumin could be modified by organophosphorus agents (OP). Human plasma was aggressively treated with FP-biotin; plasma proteins were separated into high and low abundant portions using a proteome partitioning antibody kit, and the proteins were digested with trypsin. The FP-biotinylated tryptic peptides were isolated by binding to monomeric avidin beads. The major sites of covalent attachment identified by mass spectrometry were Y138, Y148, Y401, Y411, Y452, S232, and S287 of human albumin. Prolonged treatment of pure human albumin with chlorpyrifos oxon labeled Y138, Y150, Y161, Y401, Y411, and Y452. To identify the most reactive residue, albumin was treated for 2 h with DFP, FP-biotin, chlorpyrifos oxon, or soman, digested with trypsin or pepsin, and analyzed by mass spectrometry. The most reactive residue was always Tyr 411. Diethoxyphosphate-labeled Tyr 411 was stable for months at pH 7.4. These results will be useful in the development of specific antibodies to detect OP exposure and to engineer albumin for use as an OP scavenger.


Journal of Chromatography B | 2010

Mass spectral characterization of organophosphate-labeled, tyrosine-containing peptides: Characteristic mass fragments and a new binding motif for organophosphates ☆ ☆☆

Lawrence M. Schopfer; Hasmik Grigoryan; Bin Li; Florian Nachon; Patrick Masson; Oksana Lockridge

We have identified organophosphorus agent (OP)-tyrosine adducts on 12 different proteins labeled with six different OP. Labeling was achieved by treating pure proteins with up to 40-fold molar excess of OP at pH 8-8.6. OP-treated proteins were digested with trypsin, and peptides were separated by HPLC. Fragmentation patterns for 100 OP-peptides labeled on tyrosine were determined in the mass spectrometer. The goals of the present work were (1) to determine the common features of the OP-reactive tyrosines, and (2) to describe non-sequence MSMS fragments characteristic of OP-tyrosine peptides. Characteristic ions at 272 and 244 amu for tyrosine-OP immonium ions were nearly always present in the MSMS spectrum of peptides labeled on tyrosine by chlorpyrifos-oxon. Characteristic fragments also appeared from the parent ions that had been labeled with diisopropylfluorophosphate (216 amu), sarin (214 amu), soman (214 amu) or FP-biotin (227, 312, 329, 691 and 708 amu). In contrast to OP-reactive serines, which lie in the consensus sequence GXSXG, the OP-reactive tyrosines have no consensus sequence. Their common feature is the presence of nearby positively charged residues that activate the phenolic hydroxyl group. The significance of these findings is the recognition of a new binding motif for OP to proteins that have no active site serine. Modified peptides are difficult to find when the OP bears no radiolabel and no tag. The characteristic MSMS fragment ions are valuable because they are identifiers for OP-tyrosine, independent of the peptide.


FEBS Journal | 2012

Human butyrylcholinesterase produced in insect cells: Huprine-based affinity purification and crystal structure

Xavier Brazzolotto; Marielle Wandhammer; Cyril Ronco; Marie Trovaslet; Ludovic Jean; Oksana Lockridge; Pierre-Yves Renard; Florian Nachon

Butyrylcholinesterase (BChE) is a serine hydrolase that is present in all mammalian tissues. It can accommodate larger substrates or inhibitors than acetylcholinesterase (AChE), the enzyme responsible for hydrolysis of the neurotransmitter acetylcholine in the central nervous system and neuromuscular junctions. AChE is the specific target of organophosphorous pesticides and warfare nerve agents, and BChE is a stoichiometric bioscavenger. Conversion of BChE into a catalytic bioscavenger by rational design or designing reactivators specific to BChE required structural data obtained using a recombinant low‐glycosylated human BChE expressed in Chinese hamster ovary cells. This expression system yields ∼ 1 mg of pure enzyme per litre of cell culture. Here, we report an improved expression system using insect cells with a fourfold higher yield for truncated human BChE with all glycosylation sites present. We developed a fast purification protocol for the recombinant protein using huprine‐based affinity chromatography, which is superior to the classical procainamide‐based affinity. The purified BChE crystallized under different conditions and space group than the recombinant low‐glycosylated protein produced in Chinese hamster ovary cells. The crystals diffracted to 2.5 Å. The overall monomer structure is similar to the low‐glycosylated structure except for the presence of the additional glycans. Remarkably, the carboxylic acid molecule systematically bound to the catalytic serine in the low‐glycosylated structure is also present in this new structure, despite the different expression system, purification protocol and crystallization conditions.


Bioorganic & Medicinal Chemistry | 2009

Synthesis and structure–activity relationship of Huprine derivatives as human acetylcholinesterase inhibitors

Cyril Ronco; Geoffroy Sorin; Florian Nachon; Richard Foucault; Ludovic Jean; Anthony Romieu; Pierre-Yves Renard

New series of Huprine (12-amino-6,7,10,11-tetrahydro-7,11-methanocycloocta[b]quinolines) derivatives have been synthesized and their inhibiting activities toward recombinant human acetylcholinesterase (rh-AChE) are reported. We have synthesized two series of Huprine analogues; in the first one, the benzene ring of the quinoline moiety has been replaced by different heterocycles or electron-withdrawing or electron-donating substituted phenyl group. The second one has been designed in order to evaluate the influence of modification at position 12 where different short linkers have been introduced on the Huprine X, Y skeletons. All these molecules have been prepared from ethyl- or methyl-bicyclo[3.3.1]non-6-en-3-one via Friedländer reaction involving selected o-aminocyano aromatic compounds. The synthesis of two heterodimers based on these Huprines has been also reported. Activities from moderate to same range than the most active Huprines X and Y taken as references have been obtained, the most potent analogue being about three times less active than parent Huprines X and Y. Topologic data have been inferred from molecular dockings and variations of activity between the different linkers suggest future structural modifications for activity improvement.

Collaboration


Dive into the Florian Nachon's collaboration.

Top Co-Authors

Avatar

Patrick Masson

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Oksana Lockridge

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Lawrence M. Schopfer

University of Nebraska Medical Center

View shared research outputs
Top Co-Authors

Avatar

Pierre-Yves Renard

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Martin Weik

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rachid Baati

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gianluca Santoni

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Jacques-Philippe Colletier

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge