Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Florin M. Selaru is active.

Publication


Featured researches published by Florin M. Selaru.


Nature Genetics | 2013

Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas

Yuchen Jiao; Timothy M. Pawlik; Robert A. Anders; Florin M. Selaru; Mirte M. Streppel; Donald J. Lucas; Noushin Niknafs; Violeta Beleva Guthrie; Anirban Maitra; Pedram Argani; G. Johan A. Offerhaus; Juan Carlos Roa; Lewis R. Roberts; Gregory J. Gores; Irinel Popescu; Sorin Alexandrescu; Simona Dima; Matteo Fassan; Michele Simbolo; Andrea Mafficini; Paola Capelli; Rita T. Lawlor; Andrea Ruzzenente; Alfredo Guglielmi; Giampaolo Tortora; Filippo de Braud; Aldo Scarpa; William R. Jarnagin; David S. Klimstra; Rachel Karchin

Through exomic sequencing of 32 intrahepatic cholangiocarcinomas, we discovered frequent inactivating mutations in multiple chromatin-remodeling genes (including BAP1, ARID1A and PBRM1), and mutation in one of these genes occurred in almost half of the carcinomas sequenced. We also identified frequent mutations at previously reported hotspots in the IDH1 and IDH2 genes encoding metabolic enzymes in intrahepatic cholangiocarcinomas. In contrast, TP53 was the most frequently altered gene in a series of nine gallbladder carcinomas. These discoveries highlight the key role of dysregulated chromatin remodeling in intrahepatic cholangiocarcinomas.


Hepatology | 2009

MicroRNA-21 is overexpressed in human cholangiocarcinoma and regulates programmed cell death 4 and tissue inhibitor of metalloproteinase 3†

Florin M. Selaru; Alexandru Olaru; Takatsugu Kan; Stefan David; Yulan Cheng; Yuriko Mori; Jian Yang; Bogdan C. Paun; Zhe Jin; Rachana Agarwal; James P. Hamilton; John A. Abraham; Christos S. Georgiades; Hector Alvarez; Perumal Vivekanandan; Wayne Yu; Anirban Maitra; Michael Torbenson; Paul J. Thuluvath; Gregory J. Gores; Nicholas F. LaRusso; Ralph H. Hruban; Stephen J. Meltzer

Cholangiocarcinomas (CCAs) are aggressive cancers, with high mortality and poor survival rates. Only radical surgery offers patients some hope of cure; however, most patients are not surgical candidates because of late diagnosis secondary to relatively poor accuracy of diagnostic means. MicroRNAs (miRs) are involved in every cancer examined, but they have not been evaluated in primary CCA. In this study, miR arrays were performed on five primary CCAs and five normal bile duct specimens (NBDs). Several miRs were dysregulated and miR‐21 was overexpressed in CCAs. miR‐21 differential expression in these 10 specimens was verified by quantitative reverse transcriptase polymerase chain reaction (qRT‐PCR). To validate these findings, qRT‐PCR for miR‐21 was then performed on 18 additional primary CCAs and 12 normal liver specimens. MiR‐21 was 95% sensitive and 100% specific in distinguishing between CCA and normal tissues, with an area under the receiver operating characteristic curve of 0.995. Inhibitors of miR‐21 increased protein levels of programmed cell death 4 (PDCD4) and tissue inhibitor of metalloproteinases 3 (TIMP3). Notably, messenger RNA levels of TIMP3 were significantly lower in CCAs than in normals. Conclusions: MiR‐21 is overexpressed in human CCAs. Furthermore, miR‐21 may be oncogenic, at least in part, by inhibiting PDCD4 and TIMP3. Finally, these data suggest that TIMP3 is a candidate tumor suppressor gene in the biliary tree. (HEPATOLOGY 2009.)


Cancer Research | 2009

A multicenter, double-blinded validation study of methylation biomarkers for progression prediction in Barrett’s esophagus

Zhe Jin; Yulan Cheng; Wen Gu; Yingye Zheng; Fumiaki Sato; Yuriko Mori; Alexandru Olaru; Bogdan C. Paun; Jian Yang; Takatsugu Kan; Tetsuo Ito; James P. Hamilton; Florin M. Selaru; Rachana Agarwal; Stefan David; John M. Abraham; Herbert C. Wolfsen; Michael B. Wallace; Nicholas J. Shaheen; Kay Washington; Jean Q Wang; Marcia I. Canto; Achyut K. Bhattacharyya; Mark A. Nelson; Paul A. Wagner; Yvonne Romero; Kenneth K. Wang; Ziding Feng; Richard E. Sampliner; Stephen J. Meltzer

Esophageal adenocarcinoma risk in Barretts esophagus (BE) is increased 30- to 125-fold versus the general population. Among all BE patients, however, neoplastic progression occurs only once per 200 patient-years. Molecular biomarkers are therefore needed to risk-stratify patients for more efficient surveillance endoscopy and to improve the early detection of progression. We therefore performed a retrospective, multicenter, double-blinded validation study of eight BE progression prediction methylation biomarkers. Progression or nonprogression were determined at 2 years (tier 1) and 4 years (tier 2). Methylation was assayed in 145 nonprogressors and 50 progressors using real-time quantitative methylation-specific PCR. Progressors were significantly older than nonprogressors (70.6 versus 62.5 years; P < 0.001). We evaluated a linear combination of the eight markers, using coefficients from a multivariate logistic regression analysis. Areas under the ROC curve (AUC) were high in the 2-year, 4-year, and combined data models (0.843, 0.829, and 0.840; P < 0.001, <0.001, and <0.001, respectively). In addition, even after rigorous overfitting correction, the incremental AUCs contributed by panels based on the 8 markers plus age versus age alone were substantial (Delta-AUC = 0.152, 0.114, and 0.118, respectively) in all 3 models. A methylation biomarker-based panel to predict neoplastic progression in BE has potential clinical value in improving both the efficiency of surveillance endoscopy and the early detection of neoplasia.


Oncogene | 2002

Application of cDNA microarrays to generate a molecular taxonomy capable of distinguishing between colon cancer and normal colon

Tong Tong Zou; Florin M. Selaru; Yan Xu; Valentina Shustova; Jing Yin; Yuriko Mori; David Shibata; Fumiaki Sato; Suma Wang; Andreea Olaru; Elena Deacu; Thomas C. Liu; John M. Abraham; Stephen J. Meltzer

In order to discover global gene expression patterns characterizing subgroups of colon cancer, microarrays were hybridized to labeled RNAs obtained from seventeen colonic specimens (nine carcinomas and eight normal samples). Using a hierarchical agglomerative method, the samples grouped naturally into two major clusters, in perfect concordance with pathological reports (colon cancer versus normal colon). Using a variant of the unpaired t-test, selected genes were ordered according to an index of importance. In order to confirm microarray data, we performed quantitative, real-time reverse transcriptase–polymerase chain reaction (TaqMan RT–PCR) on RNAs from 13 colorectal tumors and 13 normal tissues (seven of which were matched normal-tumor pairs). RT–PCR was performed on the gro1, B-factor, adlican, and endothelin converting enzyme-1 genes and confirmed microarray findings. Two hundred and fifty genes were identified, some of which were previously reported as being involved in colon cancer. We conclude that cDNA microarraying, combined with bioinformatics tools, can accurately classify colon specimens according to current histopathological taxonomy. Moreover, this technology holds promise of providing invaluable insight into specific gene roles in the development and progression of colon cancer. Our data suggests that a large-scale approach may be undertaken with the purpose of identifying biomarkers relevant to cancer progression.


Oncogene | 2002

Global gene expression profiling in Barrett's esophagus and esophageal cancer: a comparative analysis using cDNA microarrays

Florin M. Selaru; Tongtong Zou; Yan Xu; Valentina Shustova; Jing Yin; Yuriko Mori; Fumiako Sato; Suna Wang; Andreea Olaru; David Shibata; Bruce D. Greenwald; Mark J. Krasna; John M. Abraham; Stephen J. Meltzer

In order to identify and contrast global gene expression profiles defining the premalignant syndrome, Barretts esophagus, as well as frank esophageal cancer, we utilized cDNA microarray technology in conjunction with bioinformatics tools. We hybridized microarrays, each containing 8000 cDNA clones, to RNAs extracted from 13 esophageal surgical or endoscopic biopsy specimens (seven Barretts metaplasias and six esophageal carcinomas). Hierarchical cluster analysis was performed on these results and displayed using a color-coded graphic representation (Treeview). The esophageal samples clustered naturally into two principal groups, each possessing unique global gene expression profiles. After retrieving histologic reports for these tissues, we found that one main cluster contained all seven Barretts samples, while the remaining principal cluster comprised the six esophageal cancers. The cancers also clustered according to histopathological subtype. Thus, squamous cell carcinomas (SCCAs) constituted one group, adenocarcinomas (ADCAs) clustered separately, and one signet-ring carcinoma was in its own cluster, distinct from the ADCA cluster. We conclude that cDNA microarrays and bioinformatics show promise in the classification of esophageal malignant and premalignant diseases, and that these methods can be applied to small biopsy samples.


Advanced Materials | 2013

Biopsy with Thermally‐Responsive Untethered Microtools

Evin Gultepe; Jatinder S. Randhawa; Sachin Kadam; Sumitaka Yamanaka; Florin M. Selaru; Eun Ji Shin; Anthony N. Kalloo; David H. Gracias

Thermally activated, untethered microgrippers can reach narrow conduits in the body and be used to excise tissue for diagnostic analyses. As depicted in the figure, the feasibility of an in vivo biopsy of the porcine bile duct using untethered microgrippers is demonstrated.


Inflammatory Bowel Diseases | 2011

Dynamic changes in the expression of microRNA-31 during inflammatory bowel disease-associated neoplastic transformation

Alexandru Olaru; Florin M. Selaru; Yuriko Mori; Christine Vazquez; Stefan David; Bogdan C. Paun; Yulan Cheng; Zhe Jin; Jian Yang; Rachana Agarwal; John M. Abraham; Themistocles Dassopoulos; Mary L. Harris; Theodore M. Bayless; John H. Kwon; Noam Harpaz; Ferenc Livak; Stephen J. Meltzer

Background: Patients with inflammatory bowel disease (IBD) are at increased risk of developing colorectal cancer. Aberrant microRNA (miR) expression has been linked to carcinogenesis; however, no reports document a relationship between IBD‐related neoplasia (IBDN) and altered miR expression. In the current study we sought to identify specific miR dysregulation along the normal–inflammation–cancer axis. Methods: miR microarrays and quantitative reverse‐transcriptase polymerase chain reaction (RT‐PCR) were used to detect dysregulated miRs. Receiver operating characteristic curve analysis was employed to test for potential usefulness of miR‐31 as a disease marker of IBDNs. In silico prediction analysis, Western blot, and luciferase activity measurement were employed for target identification. Results: Several dysregulated miRs were identified between chronically inflamed mucosae and dysplasia arising in IBD. MiR‐31 expression increases in a stepwise fashion during progression from normal to IBD to IBDN and accurately discriminated IBDNs from normal or chronically inflamed tissues in IBD patients. Finally, we identified factor inhibiting hypoxia inducible factor 1 as a direct target of miR‐31. Conclusions: Our study reveals specific miR dysregulation as chronic inflammation progresses to dysplasia. MiR‐31 expression levels increase with disease progression and accurately discriminates between distinct pathological entities that coexist in IBD patients. The novel effect of miR‐31 on regulating factor inhibiting hypoxia inducible factor 1 expression provides a new insight on the pathogenesis of IBDN. (Inflamm Bowel Dis 2011;)


Oncogene | 2011

MicroRNA-192 and -215 are upregulated in human gastric cancer in vivo and suppress ALCAM expression in vitro.

Zhe Jin; Florin M. Selaru; Yulan Cheng; Takatsugu Kan; Rachana Agarwal; Yuriko Mori; Alexandru Olaru; Jr Ming Yang; Stefan David; James P. Hamilton; John M. Abraham; J Harmon; M Duncan; Elizabeth A. Montgomery; Stephen J. Meltzer

The dismal outcome of gastric cancer patients highlights the need for diagnostic biomarkers and effective therapeutic targets, such as microRNAs. We sought to discover microRNAs involved in gastric cancer, and to elucidate their downstream target mechanisms. Both cultured gastric epithelial cells (HFE145 and NCI-N87) and primary human gastric tissues (31 non-neoplastic stomach (NS) and 25 gastric carcinomas (GC)) were studied. MicroRNA microarrays and quantitative RT–PCR were applied to discover and verify differentially expressed microRNAs. in vitro cell migration and invasion, cell proliferation, cell cycle and apoptosis assays were executed to elucidate biological effects of microRNA-192 and -215. Western blotting and luciferase assays were performed to confirm direct messenger RNA targeting by microRNA-192 and -215. MicroRNA microarray analyses revealed that 25 and 20 microRNAs were upregulated and downregulated in GC vs NS, respectively. Expression levels of both microRNA-192 and -215 were significantly higher in GC than in NS (P<0.05). Luciferase assays suggested that microRNA-215 inhibits activated leukocyte cell adhesion molecule (ALCAM) expression at the posttranscriptional level. In addition, expression levels of ALCAM were significantly lower in GC than in NS. Mimics and inhibitors, respectively, of microRNA-192 or -215 exerted no effect on cell cycle or apoptosis in the immortalized normal gastric cell line HFE145 or the gastric cancer cell line NCI-N87. However, mimics of microRNA-192 or -215 significantly increased growth rates in HFE145 cells, whereas inhibitors of microRNA-192 or -215 caused significant decreases in growth rates in NCI-N87 cells. ALCAM knockdown by an ALCAM-specific siRNA significantly increased cell growth in HFE145 cells. Both transfection of mimics of microRNA-192 or -215 and ALCAM knockdown by an ALCAM-specific siRNA significantly increased the migration of HFE145 cells. In conclusion, in gastric cancer, both microRNA-192 and -215 are overexpressed in vivo and exert cell growth and migration-promoting effects in vitro, thus representing potential microRNAs with a role in cancer in the human stomach.


Hepatology | 2014

Human bile contains MicroRNA‐laden extracellular vesicles that can be used for cholangiocarcinoma diagnosis

Ling Li; David L. Masica; Masaharu Ishida; Ciprian Tomuleasa; Sho Umegaki; Anthony N. Kalloo; Christos S. Georgiades; Vikesh K. Singh; Mouen A. Khashab; Stuart K. Amateau; Zhiping Li; Patrick I. Okolo; Anne Marie Lennon; Payal Saxena; Jean Francois H Geschwind; Todd Schlachter; Kelvin Hong; Timothy M. Pawlik; Marcia I. Canto; Joanna Law; Reem Z. Sharaiha; Clifford R. Weiss; Paul J. Thuluvath; Michael Goggins; Eun Ji Shin; Haoran Peng; Vivek Kumbhari; Susan Hutfless; Liya Zhou; Esteban Mezey

Cholangiocarcinoma (CCA) presents significant diagnostic challenges, resulting in late patient diagnosis and poor survival rates. Primary sclerosing cholangitis (PSC) patients pose a particularly difficult clinical dilemma because they harbor chronic biliary strictures that are difficult to distinguish from CCA. MicroRNAs (miRs) have recently emerged as a valuable class of diagnostic markers; however, thus far, neither extracellular vesicles (EVs) nor miRs within EVs have been investigated in human bile. We aimed to comprehensively characterize human biliary EVs, including their miR content. We have established the presence of extracellular vesicles in human bile. In addition, we have demonstrated that human biliary EVs contain abundant miR species, which are stable and therefore amenable to the development of disease marker panels. Furthermore, we have characterized the protein content, size, numbers, and size distribution of human biliary EVs. Utilizing multivariate organization of combinatorial alterations (MOCA), we defined a novel biliary vesicle miR‐based panel for CCA diagnosis that demonstrated a sensitivity of 67% and specificity of 96%. Importantly, our control group contained 13 PSC patients, 16 with biliary obstruction of varying etiologies (including benign biliary stricture, papillary stenosis, choledocholithiasis, extrinsic compression from pancreatic cysts, and cholangitis), and 3 with bile leak syndromes. Clinically, these types of patients present with a biliary obstructive clinical picture that could be confused with CCA. Conclusion: These findings establish the importance of using extracellular vesicles, rather than whole bile, for developing miR‐based disease markers in bile. Finally, we report on the development of a novel bile‐based CCA diagnostic panel that is stable, reproducible, and has potential clinical utility. (Hepatology 2014;60:896–907)


Cancer Research | 2004

Identification of Genes Uniquely Involved in Frequent Microsatellite Instability Colon Carcinogenesis by Expression Profiling Combined with Epigenetic Scanning

Yuriko Mori; Jing Yin; Fumiaki Sato; Anca Sterian; Lisa A. Simms; Florin M. Selaru; Karsten Schulmann; Yan Xu; Andreea Olaru; Suna Wang; Elena Deacu; John M. Abraham; Joanne Young; Barbara A. Leggett; Stephen J. Meltzer

Gene silencing through CpG island hypermethylation has been associated with genesis or progression of frequent microsatellite instability (MSI-H) cancers. To identify novel methylation sites unique to MSI-H colon cancers in an unbiased fashion, we conducted a global expression profiling-based methylation target search. We identified 81 genes selectively down-regulated in MSI-H cancers using cDNA microarray analysis of 41 primary colon cancers. Forty six of these 81 genes contained CpG islands overlapping their 5′untranslated regions. Initial screening of six genes in 57 primary colon cancers detected the following gene with MSI-H cancer-specific hypermethylation: RAB32, a ras family member and A-kinase-anchoring protein, was methylated in 14 of 25 (56%) MSI-H cancers but in none of 32 non-MSI-H cancers or 23 normal colonic specimens. RAB32 hypermethylation correlated with RAB32 mRNA down-regulation and with hMLH1 hypermethylation. In addition, the protein-tyrosine phosphatase receptor type Ogene, PTPRO, was frequently methylated in right-sided tumors. This methylation screening strategy should identify additional genes inactivated by epigenetic silencing in colorectal and other cancers.

Collaboration


Dive into the Florin M. Selaru's collaboration.

Top Co-Authors

Avatar

Stephen J. Meltzer

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Yuriko Mori

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

John M. Abraham

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stefan David

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

Yulan Cheng

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar

Zhe Jin

Johns Hopkins University

View shared research outputs
Top Co-Authors

Avatar

James P. Hamilton

Johns Hopkins University School of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jian Yang

Johns Hopkins University

View shared research outputs
Researchain Logo
Decentralizing Knowledge