Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Florin Sasarman is active.

Publication


Featured researches published by Florin Sasarman.


Nature Genetics | 2009

Mutation in TACO1, encoding a translational activator of COX I, results in cytochrome c oxidase deficiency and late-onset Leigh syndrome

Woranontee Weraarpachai; Hana Antonicka; Florin Sasarman; Jürgen Seeger; Bertold Schrank; Jill E. Kolesar; Hanns Lochmüller; Mario Chevrette; Brett A. Kaufman; Rita Horvath; Eric A. Shoubridge

Defects in mitochondrial translation are among the most common causes of mitochondrial disease, but the mechanisms that regulate mitochondrial translation remain largely unknown. In the yeast Saccharomyces cerevisiae, all mitochondrial mRNAs require specific translational activators, which recognize sequences in 5′ UTRs and mediate translation. As mammalian mitochondrial mRNAs do not have significant 5′ UTRs, alternate mechanisms must exist to promote translation. We identified a specific defect in the synthesis of the mitochondrial DNA (mtDNA)-encoded COX I subunit in a pedigree segregating late-onset Leigh syndrome and cytochrome c oxidase (COX) deficiency. We mapped the defect to chromosome 17q by functional complementation and identified a homozygous single-base-pair insertion in CCDC44, encoding a member of a large family of hypothetical proteins containing a conserved DUF28 domain. CCDC44, renamed TACO1 for translational activator of COX I, shares a notable degree of structural similarity with bacterial homologs, and our findings suggest that it is one of a family of specific mammalian mitochondrial translational activators.


Molecular Biology of the Cell | 2010

LRPPRC and SLIRP interact in a ribonucleoprotein complex that regulates posttranscriptional gene expression in mitochondria.

Florin Sasarman; Catherine Brunel-Guitton; Hana Antonicka; Timothy Wai; Eric A. Shoubridge

The PPR family protein LRPPRC is implicated in the French Canadian variant of Leigh syndrome, a fatal neurodegenerative disease. LRPPRC functions in posttranscriptional mitochondrial gene expression as part of an RNP complex with SLIRP, a stem-loop RNA-binding protein, to regulate the stability and handling of mature mRNAs.


American Journal of Human Genetics | 2006

Distinct clinical phenotypes associated with a mutation in the mitochondrial translation elongation factor EFTs

Jan A.M. Smeitink; Orly Elpeleg; Hana Antonicka; Heleen Diepstra; Ann Saada; Paulien Smits; Florin Sasarman; Gert Vriend; Jasmine Jacob-Hirsch; Avraham Shaag; Gideon Rechavi; Brigitte Welling; Jürgen Horst; Richard J. Rodenburg; Bert van den Heuvel; Eric A. Shoubridge

The 13 polypeptides encoded in mitochondrial DNA (mtDNA) are synthesized in the mitochondrial matrix on a dedicated protein-translation apparatus that resembles that found in prokaryotes. Here, we have investigated the genetic basis for a mitochondrial protein-synthesis defect associated with a combined oxidative phosphorylation enzyme deficiency in two patients, one of whom presented with encephalomyopathy and the other with hypertrophic cardiomyopathy. Sequencing of candidate genes revealed the same homozygous mutation (C997T) in both patients in TSFM, a gene coding for the mitochondrial translation elongation factor EFTs. EFTs functions as a guanine nucleotide exchange factor for EFTu, another translation elongation factor that brings aminoacylated transfer RNAs to the ribosomal A site as a ternary complex with guanosine triphosphate. The mutation predicts an Arg333Trp substitution at an evolutionarily conserved site in a subdomain of EFTs that interacts with EFTu. Molecular modeling showed that the substitution disrupts local subdomain structure and the dimerization interface. The steady-state levels of EFTs and EFTu in patient fibroblasts were reduced by 75% and 60%, respectively, and the amounts of assembled complexes I, IV, and V were reduced by 35%-91% compared with the amounts in controls. These phenotypes and the translation defect were rescued by retroviral expression of either EFTs or EFTu. These data clearly establish mutant EFTs as the cause of disease in these patients. The fact that the same mutation is associated with distinct clinical phenotypes suggests the presence of genetic modifiers of the mitochondrial translation apparatus.


PLOS Biology | 2012

Mutations in the Mitochondrial Methionyl-tRNA Synthetase Cause a Neurodegenerative Phenotype in Flies and a Recessive Ataxia (ARSAL) in Humans

Vafa Bayat; Isabelle Thiffault; Manish Jaiswal; Martine Tétreault; Taraka R. Donti; Florin Sasarman; Geneviève Bernard; Julie Demers-Lamarche; Marie-Josée Dicaire; Jean-Pierre Mathieu; Michel Vanasse; Jean-Pierre Bouchard; Marie-France Rioux; Charles Marques Lourenço; Zhihong Li; Claire Haueter; Eric A. Shoubridge; Brett H. Graham; Bernard Brais; Hugo J. Bellen

The study of Drosophila neurodegenerative mutants combined with genetic and biochemical analyses lead to the identification of multiple complex mutations in 60 patients with a novel form of ataxia/leukoencephalopathy.


Human Molecular Genetics | 2009

Human SCO2 is required for the synthesis of CO II and as a thiol-disulphide oxidoreductase for SCO1

Scot C. Leary; Florin Sasarman; Tamiko Nishimura; Eric A. Shoubridge

Human SCO1 and SCO2 code for essential metallochaperones with ill-defined functions in the biogenesis of the CuA site of cytochrome c oxidase subunit II (CO II). Here, we have used patient cell lines to investigate the specific roles of each SCO protein in this pathway. By pulse-labeling mitochondrial translation products, we demonstrate that the synthesis of CO II is reduced in SCO2, but not in SCO1, cells. Despite this biosynthetic defect, newly synthesized CO II is more stable in SCO2 cells than in control cells. RNAi-mediated knockdown of mutant SCO2 abolishes CO II labeling in the translation assay, whereas knockdown of mutant SCO1 does not affect CO II synthesis. These results indicate that SCO2 acts upstream of SCO1, and that it is indispensable for CO II synthesis. The subsequent maturation of CO II is contingent upon the formation of a complex that includes both SCO proteins, each with a functional CxxxC copper-coordinating motif. In control cells, the cysteines in this motif in SCO1 exist as a mixed population comprised of oxidized disulphides and reduced thiols; however, the relative ratio of oxidized to reduced cysteines in SCO1 is perturbed in cells from both SCO backgrounds. Overexpression of wild-type SCO2, or knockdown of mutant SCO2, in SCO2 cells alters the ratio of oxidized to reduced cysteines in SCO1, suggesting that SCO2 acts as a thiol-disulphide oxidoreductase to oxidize the copper-coordinating cysteines in SCO1 during CO II maturation. Based on these data we present a model in which each SCO protein fulfills distinct, stage-specific functions during CO II synthesis and CuA site maturation.


American Journal of Human Genetics | 2010

Mutations in C12orf65 in Patients with Encephalomyopathy and a Mitochondrial Translation Defect

Hana Antonicka; Elsebet Østergaard; Florin Sasarman; Woranontee Weraarpachai; Anne Marie B. Pedersen; Richard J. Rodenburg; Marjo S. van der Knaap; Jan A.M. Smeitink; Zofia M.A. Chrzanowska-Lightowlers; Eric A. Shoubridge

We investigated the genetic basis for a global and uniform decrease in mitochondrial translation in fibroblasts from patients in two unrelated pedigrees who developed Leigh syndrome, optic atrophy, and ophthalmoplegia. Analysis of the assembly of the oxidative phosphorylation complexes showed severe decreases of complexes I, IV, and V and a smaller decrease in complex III. The steady-state levels of mitochondrial mRNAs, tRNAs, and rRNAs were not reduced, nor were those of the mitochondrial translation elongation factors or the protein components of the mitochondrial ribosome. Using homozygosity mapping, we identified a 1 bp deletion in C12orf65 in one patient, and DNA sequence analysis showed a different 1 bp deletion in the second patient. Both mutations predict the same premature stop codon. C12orf65 belongs to a family of four mitochondrial class I peptide release factors, which also includes mtRF1a, mtRF1, and Ict1, all characterized by the presence of a GGQ motif at the active site. However, C12orf65 does not exhibit peptidyl-tRNA hydrolase activity in an in vitro assay with bacterial ribosomes. We suggest that it might play a role in recycling abortive peptidyl-tRNA species, released from the ribosome during the elongation phase of translation.


Cell | 2012

MITRAC links mitochondrial protein translocation to respiratory-chain assembly and translational regulation.

David U. Mick; Sven Dennerlein; Heike Wiese; Robert Reinhold; David Pacheu-Grau; Isotta Lorenzi; Florin Sasarman; Woranontee Weraarpachai; Eric A. Shoubridge; Bettina Warscheid; Peter Rehling

Mitochondrial respiratory-chain complexes assemble from subunits of dual genetic origin assisted by specialized assembly factors. Whereas core subunits are translated on mitochondrial ribosomes, others are imported after cytosolic translation. How imported subunits are ushered to assembly intermediates containing mitochondria-encoded subunits is unresolved. Here, we report a comprehensive dissection of early cytochrome c oxidase assembly intermediates containing proteins required for normal mitochondrial translation and reveal assembly factors promoting biogenesis of human respiratory-chain complexes. We find that TIM21, a subunit of the inner-membrane presequence translocase, is also present in the major assembly intermediates containing newly mitochondria-synthesized and imported respiratory-chain subunits, which we term MITRAC complexes. Human TIM21 is dispensable for protein import but required for integration of early-assembling, presequence-containing subunits into respiratory-chain intermediates. We establish an unexpected molecular link between the TIM23 transport machinery and assembly of respiratory-chain complexes that regulate mitochondrial protein synthesis in response to their assembly state.


Human Molecular Genetics | 2008

The A3243G tRNALeu(UUR) MELAS mutation causes amino acid misincorporation and a combined respiratory chain assembly defect partially suppressed by overexpression of EFTu and EFG2

Florin Sasarman; Hana Antonicka; Eric A. Shoubridge

The majority of patients with MELAS (mitochondrial encephalomyophathy, lactic acidosis, stroke-like episodes) carry a heteroplasmic A3243G mutation in the mitochondrial tRNA(Leu(UUR)). The mutation prevents modification of the wobble U base, impairing translation at UUA and UUG codons; however, whether this results in amino acid misincorporation in the mitochondrial translation products remains controversial. We tested this hypothesis in homoplasmic mutant myoblasts isolated from a MELAS patient and investigated whether overexpression of the mitochondrial translation elongation factors could suppress the translation defect. Blue-Native gel electrophoretic analysis demonstrated an almost complete lack of assembly of respiratory chain complexes I, IV and V in MELAS myoblasts. This phenotype could be partially suppressed by overexpression of EFTu or EFG2 but not EFTs or EFG1. Despite the severity of the assembly defect, overall mitochondrial protein synthesis was only moderately affected, but some anomalously migrating translation products were present. Pulse-chase labeling showed reduced stability of all mitochondrial translation products consistent with the assembly defect. Labeling patterns of the translation products were similar with [(3)H]-leucine or [(3)H]-phenylalanine, showing that loss of the wobble U modification did not permit decoding of UUY codons; however, endoproteinase fingerprint analysis showed clear evidence of amino acid misincorporation in three polypeptides: CO III, CO II and ATP6. Taken together, these data demonstrate that the A3243G mutation produces both loss- and gain-of-function phenotypes, explaining the apparent discrepancy between the severity of the translation and respiratory chain assembly defects, and suggest a function for EFG2 in quality control of translation elongation.


Cell Metabolism | 2013

The Mitochondrial RNA-Binding Protein GRSF1 Localizes to RNA Granules and Is Required for Posttranscriptional Mitochondrial Gene Expression

Hana Antonicka; Florin Sasarman; Tamiko Nishimura; Vincent Paupe; Eric A. Shoubridge

RNA-binding proteins are at the heart of posttranscriptional gene regulation, coordinating the processing, storage, and handling of cellular RNAs. We show here that GRSF1, previously implicated in the binding and selective translation of influenza mRNAs, is targeted to mitochondria where it forms granules that colocalize with foci of newly synthesized mtRNA next to mitochondrial nucleoids. GRSF1 preferentially binds RNAs transcribed from three contiguous genes on the light strand of mtDNA, the ND6 mRNA, and the long noncoding RNAs for cytb and ND5, each of which contains multiple consensus binding sequences. RNAi-mediated knockdown of GRSF1 leads to alterations in mitochondrial RNA stability, abnormal loading of mRNAs and lncRNAs on the mitochondrial ribosome, and impaired ribosome assembly. This results in a specific protein synthesis defect and a failure to assemble normal amounts of the oxidative phosphorylation complexes. These data implicate GRSF1 as a key regulator of posttranscriptional mitochondrial gene expression.


American Journal of Human Genetics | 2012

Mutations in C12orf62, a Factor that Couples COX I Synthesis with Cytochrome c Oxidase Assembly, Cause Fatal Neonatal Lactic Acidosis

Woranontee Weraarpachai; Florin Sasarman; Tamiko Nishimura; Hana Antonicka; Karine Auré; Agnès Rötig; Anne Lombès; Eric A. Shoubridge

We investigated a family in which the index subject presented with severe congenital lactic acidosis and dysmorphic features associated with a cytochrome c oxidase (COX)-assembly defect and a specific decrease in the synthesis of COX I, the subunit that nucleates COX assembly. Using a combination of microcell-mediated chromosome transfer, homozygosity mapping, and transcript profiling, we mapped the gene defect to chromosome 12 and identified a homozygous missense mutation (c.88G>A) in C12orf62. C12orf62 was not detectable by immunoblot analysis in subject fibroblasts, and retroviral expression of the wild-type C12orf62 cDNA rescued the biochemical phenotype. Furthermore, siRNA-mediated knockdown of C12orf 62 recapitulated the biochemical defect in control cells and exacerbated it in subject cells. C12orf62 is apparently restricted to the vertebrate lineage. It codes for a very small (6 kDa), uncharacterized, single-transmembrane protein that localizes to mitochondria and elutes in a complex of ∼110 kDa by gel filtration. COX I, II, and IV coimmunoprecipated with an epitope-tagged version of C12orf62, and 2D blue-native-polyacrylamide-gel-electrophoresis analysis of newly synthesized mitochondrial COX subunits in subject fibroblasts showed that COX assembly was impaired and that the nascent enzyme complex was unstable. We conclude that C12orf62 is required for coordination of the early steps of COX assembly with the synthesis of COX I.

Collaboration


Dive into the Florin Sasarman's collaboration.

Top Co-Authors

Avatar

Eric A. Shoubridge

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Hana Antonicka

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Tamiko Nishimura

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Woranontee Weraarpachai

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Alexandre Janer

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar

Catherine Brunel-Guitton

Montreal Neurological Institute and Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scot C. Leary

University of Saskatchewan

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge