Florine Obrist
University of Paris-Sud
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Florine Obrist.
OncoImmunology | 2014
Fernando Aranda; Erika Vacchelli; Florine Obrist; Alexander M.M. Eggermont; Jérôme Galon; Isabelle Cremer; Jan Henrik ter Meulen; Laurence Zitvogel; Guido Kroemer; Lorenzo Galluzzi
Toll-like receptors (TLRs) are an evolutionarily conserved group of enzymatically inactive, single membrane-spanning proteins that recognize a wide panel of exogenous and endogenous danger signals. Besides constituting a crucial component of the innate immune response to bacterial and viral pathogens, TLRs appear to play a major role in anticancer immunosurveillance. In line with this notion, several natural and synthetic TLR ligands have been intensively investigated for their ability to boost tumor-targeting immune responses elicited by a variety of immunotherapeutic and chemotherapeutic interventions. Three of these agents are currently approved by the US Food and Drug Administration (FDA) or equivalent regulatory agencies for use in cancer patients: the so-called bacillus Calmette-Guérin, monophosphoryl lipid A, and imiquimod. However, the number of clinical trials testing the therapeutic potential of both FDA-approved and experimental TLR agonists in cancer patients is stably decreasing, suggesting that drug developers and oncologists are refocusing their interest on alternative immunostimulatory agents. Here, we summarize recent findings on the use of TLR agonists in cancer patients and discuss how the clinical evaluation of FDA-approved and experimental TLR ligands has evolved since the publication of our first Trial Watch dealing with this topic.
OncoImmunology | 2014
Erika Vacchelli; Fernando Aranda; Florine Obrist; Alexander M.M. Eggermont; Jérôme Galon; Isabelle Cremer; Laurence Zitvogel; Guido Kroemer; Lorenzo Galluzzi
Tumor-targeting immune responses provide a significant contribution to (when they do not entirely account for) the clinical activity of diverse antineoplastic regimens, encompassing not only a large panel of immunotherapeutic strategies but also conventional cytotoxic molecules, targeted anticancer agents and irradiation. In line with this notion, several approaches have been devised to elicit novel or boost existing anticancer immune responses, including the administration of immunomodulatory cytokines. Such a relatively unspecific intervention suffices to mediate clinical effects in (at least a subset of) patients bearing particularly immunogenic tumors, like melanoma and renal cell carcinoma. More often, however, immunostimulatory cytokines are administered to boost the immunogenic potential of other agents, including (but not limited to) immune checkpoint-blocking antibodies, anticancer vaccines, oncolytic viruses and immunogenic chemotherapeutics. Here, we summarize the latest advances in the clinical development of recombinant cytokines as an immunomodulatory intervention for cancer therapy.
Molecular and Cellular Oncology | 2015
Gwenola Manic; Florine Obrist; Antonella Sistigu; I Vitale
The ataxia telangiectasia mutated serine/threonine kinase (ATM)/checkpoint kinase 2 (CHEK2, best known as CHK2) and the ATM and Rad3-related serine/threonine kinase (ATR)/CHEK1 (best known as CHK1) cascades are the 2 major signaling pathways driving the DNA damage response (DDR), a network of processes crucial for the preservation of genomic stability that act as a barrier against tumorigenesis and tumor progression. Mutations and/or deletions of ATM and/or CHK2 are frequently found in tumors and predispose to cancer development. In contrast, the ATR–CHK1 pathway is often upregulated in neoplasms and is believed to promote tumor growth, although some evidence indicates that ATR and CHK1 may also behave as haploinsufficient oncosuppressors, at least in a specific genetic background. Inactivation of the ATM–CHK2 and ATR–CHK1 pathways efficiently sensitizes malignant cells to radiotherapy and chemotherapy. Moreover, ATR and CHK1 inhibitors selectively kill tumor cells that present high levels of replication stress, have a deficiency in p53 (or other DDR players), or upregulate the ATR–CHK1 module. Despite promising preclinical results, the clinical activity of ATM, ATR, CHK1, and CHK2 inhibitors, alone or in combination with other therapeutics, has not yet been fully demonstrated. In this Trial Watch, we give an overview of the roles of the ATM-CHK2 and ATR-CHK1 pathways in cancer initiation and progression, and summarize the results of clinical studies aimed at assessing the safety and therapeutic profile of regimens based on inhibitors of ATR and CHK1, the only 2 classes of compounds that have so far entered clinics.
Molecular and Cellular Oncology | 2014
Gwenola Manic; Florine Obrist; Guido Kroemer; Ilio Vitale; Lorenzo Galluzzi
Macroautophagy (herein referred to as autophagy) is a highly conserved mechanism for the lysosomal degradation of cytoplasmic components. Autophagy is critical for the maintenance of intracellular homeostasis, both in baseline conditions and in the context of adaptive responses to stress. In line with this notion, defects in the autophagic machinery have been etiologically associated with various human disorders including infectious, inflammatory and neoplastic conditions. Once tumors are established, however, autophagy sustains the survival of malignant cells, hence representing an appealing target for the design of novel anticancer regimens. Accordingly, inhibitors of autophagy including chloroquine and hydroxychloroquine have been shown to mediate substantial antineoplastic effects in preclinical models, especially when combined with chemo- or radiotherapeutic interventions. The pharmacological profile of chloroquine and hydroxychloroquine, however, appear to involve mechanisms other than autophagy inhibition. Here, we discuss the dual role of autophagy in oncogenesis and tumor progression, and summarize the results or design of clinical studies recently completed or initiated to evaluate the therapeutic activity of chloroquine derivatives in cancer patients.
Molecular and Cellular Oncology | 2016
Antonella Sistigu; Gwenola Manic; Florine Obrist; I Vitale
ABSTRACT Poly(ADP-ribose) polymerases (PARPs) are a members of family of enzymes that catalyze poly(ADP-ribosyl)ation (PARylation) and/or mono(ADP-ribosyl)ation (MARylation), two post-translational protein modifications involved in crucial cellular processes including (but not limited to) the DNA damage response (DDR). PARP1, the most abundant family member, is a nuclear protein that is activated upon sensing distinct types of DNA damage and contributes to their resolution by PARylating multiple DDR players. Recent evidence suggests that, along with DDR, activated PARP1 mediates a series of prosurvival and proapoptotic processes aimed at preserving genomic stability. Despite this potential oncosuppressive role, upregulation and/or overactivation of PARP1 or other PARP enzymes has been reported in a variety of human neoplasms. Over the last few decades, several pharmacologic inhibitors of PARP1 and PARP2 have been assessed in preclinical and clinical studies showing potent antineoplastic activity, particularly against homologous recombination (HR)-deficient ovarian and breast cancers. In this Trial Watch, we describe the impact of PARP enzymes and PARylation in cancer, discuss the mechanism of cancer cell killing by PARP1 inactivation, and summarize the results of recent clinical studies aimed at evaluating the safety and therapeutic profile of PARP inhibitors in cancer patients.
Molecular and Cellular Oncology | 2015
Florine Obrist; Gwenola Manic; Guido Kroemer; Ilio Vitale; Lorenzo Galluzzi
The so-called “ubiquitin-proteasome system” (UPS) is a multicomponent molecular apparatus that catalyzes the covalent attachment of several copies of the small protein ubiquitin to other proteins that are generally (but not always) destined to proteasomal degradation. This enzymatic cascade is crucial for the maintenance of intracellular protein homeostasis (both in physiological conditions and in the course of adaptive stress responses), and regulates a wide array of signaling pathways. In line with this notion, defects in the UPS have been associated with aging as well as with several pathological conditions including cardiac, neurodegenerative, and neoplastic disorders. As transformed cells often experience a constant state of stress (as a result of the hyperactivation of oncogenic signaling pathways and/or adverse microenvironmental conditions), their survival and proliferation are highly dependent on the integrity of the UPS. This rationale has driven an intense wave of preclinical and clinical investigation culminating in 2003 with the approval of the proteasomal inhibitor bortezomib by the US Food and Drug Administration for use in multiple myeloma patients. Another proteasomal inhibitor, carfilzomib, is now licensed by international regulatory agencies for use in multiple myeloma patients, and the approved indications for bortezomib have been extended to mantle cell lymphoma. This said, the clinical activity of bortezomib and carfilzomib is often limited by off-target effects, innate/acquired resistance, and the absence of validated predictive biomarkers. Moreover, the antineoplastic activity of proteasome inhibitors against solid tumors is poor. In this Trial Watch we discuss the contribution of the UPS to oncogenesis and tumor progression and summarize the design and/or results of recent clinical studies evaluating the therapeutic profile of proteasome inhibitors in cancer patients.
The EMBO Journal | 2018
Florine Obrist; Judith Michels; Sylvère Durand; Alexis Chery; Jonathan Pol; Sarah Levesque; Adrien Joseph; Valentina Astesana; Federico Pietrocola; Gen Sheng Wu; Maria Castedo; Guido Kroemer
Cisplatin is the most widely used chemotherapeutic agent, and resistance of neoplastic cells against this cytoxicant poses a major problem in clinical oncology. Here, we explored potential metabolic vulnerabilities of cisplatin‐resistant non‐small human cell lung cancer and ovarian cancer cell lines. Cisplatin‐resistant clones were more sensitive to killing by nutrient deprivation in vitro and in vivo than their parental cisplatin‐sensitive controls. The susceptibility of cisplatin‐resistant cells to starvation could be explained by a particularly strong dependence on glutamine. Glutamine depletion was sufficient to restore cisplatin responses of initially cisplatin‐resistant clones, and glutamine supplementation rescued cisplatin‐resistant clones from starvation‐induced death. Mass spectrometric metabolomics and specific interventions on glutamine metabolism revealed that, in cisplatin‐resistant cells, glutamine is mostly required for nucleotide biosynthesis rather than for anaplerotic, bioenergetic or redox reactions. As a result, cisplatin‐resistant cancers became exquisitely sensitive to treatment with antimetabolites that target nucleoside metabolism.
Cell Death and Disease | 2018
Shaoyi Zhang; Gautier Stoll; José Manuel Bravo-San Pedro; Valentina Sica; Allan Sauvat; Florine Obrist; Oliver Kepp; Yousheng Li; Luigi Maiuri; Naoufal Zamzami; Guido Kroemer
Cystic Fibrosis (CF) due to the ΔF508 mutation of cystic fibrosis transmembrane conductance regulator (CFTR) can be treated with a combination of cysteamine and Epigallocatechin gallate (EGCG). Since ECGC is not a clinically approved drug, we attempted to identify other compounds that might favourably interact with cysteamine to induce autophagy and thus rescuing the function of ΔF508 CFTR as a chloride channel in the plasma membrane. For this, we screened a compound library composed by chemically diverse autophagy inducers for their ability to enhance autophagic flux in the presence of cysteamine. We identified the antiarrhythmic Ca2+ channel blocker amiodarone, as an FDA-approved drug having the property to cooperate with cysteamine to stimulate autophagy in an additive manner. Amiodarone promoted the re-expression of ΔF508 CFTR protein in the plasma membrane of respiratory epithelial cells. Hence, amiodarone might be yet another compound for the etiological therapy of CF in patients bearing the ΔF508 CFTR mutation.
Molecular and Cellular Oncology | 2018
Maria Castedo; Florine Obrist; Guido Kroemer
ABSTRACT Specific metabolic alterations have recently been observed in cisplatin-resistant cancers. As a result, cisplatin resistance can be overcome by co-administration of pyridoxine, and cisplatin-resistant cancer cells become exquisitely sensitive to killing by inhibitors of poly(ADP-ribose) polymerase, starvation, and antimetabolites targeting nucleotide biosynthesis.
Biochemical Pharmacology | 2014
Judith Michels; Florine Obrist; Ilio Vitale; Delphine Lissa; Pauline Garcia; Parviz Behnam-Motlagh; Kimitoshi Kohno; Gen Sheng Wu; Catherine Brenner; Maria Castedo; Guido Kroemer