Fokke B. van Meulen
University of Twente
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fokke B. van Meulen.
Frontiers in Bioengineering and Biotechnology | 2016
Fokke B. van Meulen; Bart Klaassen; Jeremia P. Held; Jasper Reenalda; Jaap Buurke; Bert-Jan van Beijnum; Andreas R. Luft; Peter H. Veltink
Background Stroke survivors are commonly left with disabilities that impair activities of daily living. The main objective of their rehabilitation program is to maximize the functional performance at home. However, the actual performance of patients in their home environment is unknown. Therefore, objective evaluation of daily life activities of stroke survivors in their physical interaction with the environment is essential for optimal guidance of rehabilitation therapy. Monitoring daily life movements could be very challenging, as it may result in large amounts of data, without any context. Therefore, suitable metrics are necessary to quantify relevant aspects of movement performance during daily life. The objective of this study is to develop data processing methods, which can be used to process movement data into relevant metrics for the evaluation of intra-patient differences in quality of movements in a daily life setting. Methods Based on an iterative requirement process, functional and technical requirements were formulated. These were prioritized resulting in a coherent set of metrics. An activity monitor was developed to give context to captured movement data at home. Finally, the metrics will be demonstrated in two stroke participants during and after their rehabilitation phases. Results By using the final set of metrics, quality of movement can be evaluated in a daily life setting. As example to demonstrate potential of presented methods, data of two stroke patients were successfully analyzed. Differences between in-clinic measurements and measurements during daily life are observed by applying the presented metrics and visualization methods. Heel height profiles show intra-patient differences in height, distance, stride profile, and variability between strides during a 10-m walk test in the clinic and walking at home. Differences in distance and stride profile between both feet were larger at home, than in clinic. For the upper extremities, the participant was able to reach further away from the pelvis and cover a larger area. Discussion Presented methods can be used for the objective evaluation of intra-patient differences in movement quality between in-clinic and daily life measurements. Any observed progression or deterioration of movement quality could be used to decide on continuing, stopping, or adjusting rehabilitation programs.
Critical Care Medicine | 2012
M.C. Cloostermans; Fokke B. van Meulen; C. Eertman; Harold W. Hom; Michel Johannes Antonius Maria van Putten
Objective: To evaluate the value of continuous electroencephalography in early prognostication in patients treated with hypothermia after cardiac arrest. Design: Prospective cohort study. Setting: Medical intensive care unit. Patients: Sixty patients admitted to the intensive care unit for therapeutic hypothermia after cardiac arrest. Intervention: None. Measurements and Main Results: In all patients, continuous electroencephalogram and daily somatosensory evoked potentials were recorded during the first 5 days of admission or until intensive care unit discharge. Neurological outcomes were based on each patient’s best achieved Cerebral Performance Category score within 6 months. Twenty-seven of 56 patients (48%) achieved good neurological outcome (Cerebral Performance Category score 1–2). At 12 hrs after resuscitation, 43% of the patients with good neurological outcome showed continuous, diffuse slow electroencephalogram rhythms, whereas this was never observed in patients with poor outcome. The sensitivity for predicting poor neurological outcome of low-voltage and isoelectric electroencephalogram patterns 24 hrs after resuscitation was 40% (95% confidence interval 19%–64%) with a 100% specificity (confidence interval 86%–100%), whereas the sensitivity and specificity of absent somatosensory evoked potential responses during the first 24 hrs were 24% (confidence interval 10%–44%) and 100% (confidence interval: 87%–100%), respectively. The negative predictive value for poor outcome of low-voltage and isoelectric electroencephalogram patterns was 68% (confidence interval 50%–81%) compared to 55% (confidence interval 40%–60%) for bilateral somatosensory evoked potential absence, both with a positive predictive value of 100% (confidence interval 63%–100% and 59%–100% respectively). Burst-suppression patterns after 24 hrs were also associated with poor neurological outcome, but not inevitably so. Conclusions: In patients treated with hypothermia, electroencephalogram monitoring during the first 24 hrs after resuscitation can contribute to the prediction of both good and poor neurological outcome. Continuous patterns within 12 hrs predicted good outcome. Isoelectric or low-voltage electroencephalograms after 24 hrs predicted poor outcome with a sensitivity almost two times larger than bilateral absent somatosensory evoked potential responses.
Annals of Biomedical Engineering | 2015
Fokke B. van Meulen; Jasper Reenalda; Jaap Buurke; Peter H. Veltink
For an optimal guidance of the rehabilitation therapy of stroke patients in an in-home setting, objective, and patient-specific performance assessment of arm movements is needed. In this study, metrics of hand movement relative to the pelvis and the sternum were estimated in 13 stroke subjects using a full body ambulatory movement analysis system, including 17 inertial sensors integrated in a body-worn suit. Results were compared with the level of arm impairment evaluated with the upper extremity part of the Fugl-Meyer Assessment scale (uFMA). Metrics of arm movement performance of the affected side, including size of work area, maximum reaching distance and movement range in vertical direction, were evaluated during a simulated daily-life task. These metrics appeared to strongly correlate with uFMA scores. Using this body-worn sensor system, metrics of the performance of arm movements can easily be measured and evaluated while the subject is ambulating in a simulated daily-life setting. Suggested metrics can be used to objectively assess the performance of the arm movements over a longer period in a daily-life setting. Further development of the body-worn sensing system is needed before it can be unobtrusively used in a daily-life setting.
Journal of Neuroengineering and Rehabilitation | 2016
Fokke B. van Meulen; D. Weenk; Jaap Buurke; Bert-Jan van Beijnum; Peter H. Veltink
BackgroundFor optimal guidance of walking rehabilitation therapy of stroke patients in an in-home setting, a small and easy to use wearable system is needed. In this paper we present a new shoe-integrated system that quantifies walking balance during activities of daily living and is not restricted to a lab environment. Quantitative parameters were related to clinically assessed level of balance in order to assess the additional information they provide.MethodsData of 13 participants who suffered a stroke were recorded while walking 10 meter trials and wearing special instrumented shoes. The data from 3D force and torque sensors, 3D inertial sensors and ultrasound transducers were fused to estimate 3D (relative) position, velocity, orientation and ground reaction force of each foot. From these estimates, center of mass and base of support were derived together with a dynamic stability margin, which is the (velocity) extrapolated center of mass with respect to the front-line of the base of support in walking direction. Additionally, for each participant step lengths and stance times for both sides as well as asymmetries of these parameters were derived.ResultsUsing the proposed shoe-integrated system, a complete reconstruction of the kinematics and kinetics of both feet during walking can be made. Dynamic stability margin and step length symmetry were not significantly correlated with Berg Balance Scale (BBS) score, but participants with a BBS score below 45 showed a small-positive dynamic stability margin and more asymmetrical step lengths. More affected participants, having a lower BBS score, have a lower walking speed, make smaller steps, longer stance times and have more asymmetrical stance times.ConclusionsThe proposed shoe-integrated system and data analysis methods can be used to quantify daily-life walking performance and walking balance, in an ambulatory setting without the use of a lab restricted system. The presented system provides additional insight about the balance mechanism, via parameters describing walking patterns of an individual subject. This information can be used for patient specific and objective evaluation of walking balance and a better guidance of therapies during the rehabilitation.Trial registrationThe study protocol is a subset of a larger protocol and registered in the Netherlands Trial Registry, number NTR3636.
Frontiers in Bioengineering and Biotechnology | 2017
Bart Klaassen; Bert-Jan van Beijnum; Jeremia P. Held; Jasper Reenalda; Fokke B. van Meulen; Peter H. Veltink; Hermie J. Hermens
Background Inertial motion capture systems are used in many applications such as measuring the movement quality in stroke survivors. The absence of clinical effectiveness and usability evidence in these assistive technologies into rehabilitation has delayed the transition of research into clinical practice. Recently, a new inertial motion capture system was developed in a project, called INTERACTION, to objectively measure the quality of movement (QoM) in stroke survivors during daily-life activity. With INTERACTION, we are to be able to investigate into what happens with patients after discharge from the hospital. Resulting QoM metrics, where a metric is defined as a measure of some property, are subsequently presented to care professionals. Metrics include for example: reaching distance, walking speed, and hand distribution plots. The latter shows a density plot of the hand position in the transversal plane. The objective of this study is to investigate the opinions of care professionals in using these metrics obtained from INTERACTION and its usability. Methods By means of a semi-structured interview, guided by a presentation, presenting two patient reports. Each report includes several QoM metric (like reaching distance, hand position density plots, shoulder abduction) results obtained during daily-life measurements and in clinic and were evaluated by care professionals not related to the project. The results were compared with care professionals involved within the INTERACTION project. Furthermore, two questionnaires (5-point Likert and open questionnaire) were handed over to rate the usability of the metrics and to investigate if they would like such a system in their clinic. Results Eleven interviews were conducted, where each interview included either two or three care professionals as a group, in Switzerland and The Netherlands. Evaluation of the case reports (CRs) by participants and INTERACTION members showed a high correlation for both lower and upper extremity metrics. Participants were most in favor of hand distribution plots during daily-life activities. All participants mentioned that visualizing QoM of stroke survivors over time during daily-life activities has more possibilities compared to current clinical assessments. They also mentioned that these metrics could be important for self-evaluation of stroke survivors. Discussion The results showed that most participants were able to understand the metrics presented in the CRs. For a few metrics, it remained difficult to assess the underlying cause of the QoM. Hence, a combination of metrics is needed to get a better insight of the patient. Furthermore, it remains important to report the state (e.g., how the patient feels), its surroundings (outside, inside the house, on a slippery surface), and detail of specific activities (does the patient grasps a piece of paper or a heavy cooking pan but also dual tasks). Altogether, it remains a questions how to determine what the patient is doing and where the patient is doing his or her activities.
biomedical engineering systems and technologies | 2016
Bart Klaassen; Bert Jan van Beijnum; Marcel H.H. Weusthof; Dennis Hofs; Fokke B. van Meulen; Ed Droog; Henk Luinge; Laurens Slot; Alessandro Tognetti; Federico Lorussi; Rita Paradiso; Jeremia P. Held; Andreas R. Luft; Jasper Reenalda; Corien D.M. Nikamp; Jaap Buurke; Hermie J. Hermens; Peter H. Veltink
Currently, the changes in functional capacity and performance of stroke patients after returning home from a rehabilitation hospital is unknown to a physician, having no objective information about the intensity and quality of a patient’s daily-life activities. Therefore, there is a need to develop and validate an unobtrusive and modular system for objectively monitoring the stroke patient’s upper and lower extremity motor function in daily-life activities and in home training. This is the main goal of the European FP7 project named “INTERACTION”. A complete full body sensing system is developed, whicj integrates Inertial Measurement Units (IMU), Knitted Piezoresistive Fabric (KPF) strain sensors, KPF goniometers, EMG electrodes and force sensors into a modular sensor suit designed for stroke patients. In this paper, we describe the complete INTERACTION sensor system. Data from the sensors are captured wirelessly by a software application and stored in a remote secure database for later access and processing via portal technology. Data processing includes a 3D full body reconstruction by means of the Xsens MoCap Engine, providing position and orientation of each body segment (poses). In collaboration with clinicians and engineers, clinical assessment measures were defined and the question of how to present the data on the web portal was addressed. The complete sensing system is fully implemented and is currently being validated. Patients measurements start in June 2014.
PLOS ONE | 2016
Fokke B. van Meulen; D. Weenk; Edwin H.F. van Asseldonk; H. Martin Schepers; Peter H. Veltink; Jaap Buurke
Background An important objective of rehabilitation care is to regain adequate balance function to safely ambulate in community. However, in rehabilitation practice, it remains unclear if a stroke survivor functionally recovers by restitution or by learning to compensate for the lack of restoration of body function. Aim of this study is to propose and evaluate methods for the objective evaluation of balance during functional walking in stroke survivors. Methods Stroke survivors performed twice a Timed “Up & Go” (TUG) test. Ground reaction forces and position changes of both feet were measured using instrumented shoes and used to estimate the position of the center of mass (CoM). Balance control and efficiency metrics were defined to evaluate functional walking under variable conditions. Metrics were corrected based on the instantaneous velocity direction of CoM. Intra- and inter-participant variations for different phases of the TUG test were examined. Metrics were related to the Berg balance scale (BBS). Results Participants with higher BBS scores show a more efficient walking pattern. Their walking velocity and walking direction is less variable and they are more frequently unstable when walking in a straight line or when turning. Furthermore, the less affected participants are able to move their CoM more towards their affected side. Discussion We developed and demonstrated a method to assess walking balance of stroke survivors. System design and evaluation methods allow balance evaluation during functional walking in daily life. Some presented metrics show correlations with BBS scores. Clear inter- and intra-patient variations in metric values are present that cannot be explained by BBS scores, which supports the additional value of the presented system. Presented methods may be used for objective evaluation of restitution and compensation of walking balance and have a potential application in individual evidence-based therapy.
international conference on rehabilitation robotics | 2017
Fokke B. van Meulen; Bert-Jan van Beijnum; Jaap Buurke; Peter H. Veltink
Reduction of the number of sensors needed to evaluate arm movements, makes a system for the assessment of human body movements more suitable for clinical practice and daily life assessments. In this study, we propose an algorithm to reconstruct lower arm orientation, velocity and position, based on a sensing system which consists of only one inertial measurement unit (IMU) to the forearm. Lower arm movements were reconstructed using a single IMU and assuming that within a measurement there are moments without arm movements. The proposed algorithm, together with a single IMU attached to the forearm, may be used to evaluate lower arm movements during clinical assessments or functional tasks. In this pilot study, reconstructed quantities were compared with an optical reference system. The limits of agreement in the magnitude of the orientation vector and the norm of the velocity vectors are respectively 4.2 deg (normalized, 5.2 percent) and 7.1 cm/s (normalized, 5.8 percent). The limit of agreement of the difference between the reconstructed positions of both sensing systems were relatively greater 7.7 cm (normalized, 16.8 percent).
Archive | 2019
Jaap Buurke; Erik Christiaan Prinsen; Fokke B. van Meulen; Peter H. Veltink
Regaining balance function is often one of the key goals of stroke rehabilitation. Improvements in balance function can be the result of restitution or compensational strategies. In previous studies, the processes of restitution and compensational strategies have been established for straight-line walking. The development of these processes, however, are still largely unknown for other gait activities such as turning and side-stepping. Here, we present a fully ambulant gait analysis system that can be used for an objective evaluation of balance during functional tasks. The results of two individuals are presented: one individual with adequate balance function and one individual with impaired balance function. The analysis showed that the individual with adequate balance function was able to walk with increased instability when compared to the individual with impaired balance function. Based on these results, we conclude that the fully ambulant system is feasible for an objective quantification of balance function.
Archive | 2019
Jeremia P. Held; Peter H. Veltink; Fokke B. van Meulen; Andreas R. Luft; Jaap Buurke
Patient progress in rehabilitation after stroke is measured with standard clinical assessments. In questionnaires or test settings a therapist encourages the patient to perform a set of tasks. These tasks typically do not match what the patient does in daily life. To measure the upper limb function in daily life movements, a sensor-based system has been developed. The study investigates, with a full body sensor-based system the difference between standard clinical assessments and daily life monitoring. Four stroke patients were included in the analyses. A change in arm use during rehabilitation and the difference between clinical assessments and daily life measures were observed rendering the latter as potentially more sensitive candidates for outcome measures.