Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fonnet E. Bleeker is active.

Publication


Featured researches published by Fonnet E. Bleeker.


Cancer Research | 2009

Intrinsic Gene Expression Profiles of Gliomas Are a Better Predictor of Survival than Histology

Lonneke Gravendeel; Mathilde C.M. Kouwenhoven; Olivier Gevaert; Johan de Rooi; Andrew Stubbs; J. Elza Duijm; Anneleen Daemen; Fonnet E. Bleeker; Linda B. C. Bralten; Nanne K. Kloosterhof; Bart De Moor; Paul H. C. Eilers; Peter J. van der Spek; Johan M. Kros; Peter A. E. Sillevis Smitt; Martin J. van den Bent; Pim J. French

Gliomas are the most common primary brain tumors with heterogeneous morphology and variable prognosis. Treatment decisions in patients rely mainly on histologic classification and clinical parameters. However, differences between histologic subclasses and grades are subtle, and classifying gliomas is subject to a large interobserver variability. To improve current classification standards, we have performed gene expression profiling on a large cohort of glioma samples of all histologic subtypes and grades. We identified seven distinct molecular subgroups that correlate with survival. These include two favorable prognostic subgroups (median survival, >4.7 years), two with intermediate prognosis (median survival, 1-4 years), two with poor prognosis (median survival, <1 year), and one control group. The intrinsic molecular subtypes of glioma are different from histologic subgroups and correlate better to patient survival. The prognostic value of molecular subgroups was validated on five independent sample cohorts (The Cancer Genome Atlas, Repository for Molecular Brain Neoplasia Data, GSE12907, GSE4271, and Li and colleagues). The power of intrinsic subtyping is shown by its ability to identify a subset of prognostically favorable tumors within an external data set that contains only histologically confirmed glioblastomas (GBM). Specific genetic changes (epidermal growth factor receptor amplification, IDH1 mutation, and 1p/19q loss of heterozygosity) segregate in distinct molecular subgroups. We identified a subgroup with molecular features associated with secondary GBM, suggesting that different genetic changes drive gene expression profiles. Finally, we assessed response to treatment in molecular subgroups. Our data provide compelling evidence that expression profiling is a more accurate and objective method to classify gliomas than histologic classification. Molecular classification therefore may aid diagnosis and can guide clinical decision making.


Oncogene | 2008

AKT1 E17K in human solid tumours

Fonnet E. Bleeker; Lara Felicioni; F Buttitta; Subhalakshmi Lamba; Luca Cardone; Monica Rodolfo; Aldo Scarpa; Sieger Leenstra; Milo Frattini; Mattia Barbareschi; M Del Grammastro; Mariagrazia Sciarrotta; Carlo Zanon; Antonio Marchetti; Alberto Bardelli

The serine-threonine kinase AKT1 is a central player in the oncogenic pathway controlled by PI3K. Recently, a somatic mutation in AKT1 (E17K) has been detected in breast, colorectal, lung and ovarian cancers. The E17K change results in constitutive AKT1 activation and induces leukaemia in mice. We determined the occurrence of the E17K variant in a panel of 764 tumour samples. These included breast, lung, ovarian, colorectal and pancreatic carcinomas as well as melanomas and glioblastomas. Despite the fact that these tumours are known to bear alterations in genes involved in the PI3K signalling pathway, AKT1E17K was detected only in breast (16/273), colorectal (1/88) and lung (1/155) cancers. Within the neoplasms of breast origin, the AKT1E17K variant was mutually exclusive with respect to the PIK3CAE454KorH1047R alleles and was present only in ductal and lobular histotypes. Our results, showing that AKT1 mutations seem to occur in a tissue-specific fashion have basic and clinical implications. First, the activity of mutated AKT1 in oncogenic PI3K signalling could be strictly dependent on the cell and tissue milieu. Second, therapeutic efforts aimed at selective targeting the AKT1E17K variant could be effective mainly in specific cancer types.


Cancer Research | 2007

Novel Somatic and Germline Mutations in Cancer Candidate Genes in Glioblastoma, Melanoma, and Pancreatic Carcinoma

Asha Balakrishnan; Fonnet E. Bleeker; Simona Lamba; Monica Rodolfo; Maria Daniotti; Aldo Scarpa; Angela A.G. van Tilborg; Sieger Leenstra; Carlo Zanon; Alberto Bardelli

A recent systematic sequence analysis of well-annotated human protein coding genes or consensus coding sequences led to the identification of 189 genes displaying somatic mutations in breast and colorectal cancers. Based on their mutation prevalence, a subset of these genes was identified as cancer candidate (CAN) genes as they could be potentially involved in cancer. We evaluated the mutational profiles of 19 CAN genes in the highly aggressive tumors: glioblastoma, melanoma, and pancreatic carcinoma. Among other changes, we found novel somatic mutations in EPHA3, MLL3, TECTA, FBXW7, and OBSCN, affecting amino acids not previously found to be mutated in human cancers. Interestingly, we also found a germline nucleotide variant of OBSCN that was previously reported as a somatic mutation. Our results identify specific genetic lesions in glioblastoma, melanoma, and pancreatic cancers and indicate that CAN genes and their mutational profiles are tumor specific. Some of the mutated genes, such as the tyrosine kinase EPHA3, are clearly amenable to pharmacologic intervention and could represent novel therapeutic targets for these incurable cancers. We also speculate that similar to other oncogenes and tumor suppressor genes, mutations affecting OBSCN could be involved in cancer predisposition.


Journal of Histochemistry and Cytochemistry | 2000

Comparative Localization of Cathepsin B Protein and Activity in Colorectal Cancer

Lonny G.M. Hazen; Fonnet E. Bleeker; B. Lauritzen; Sieglinde Bahns; Jiying Song; Ard Jonker; Bernard E.M. Van Driel; Hans Lyon; Ulla Hansen; Angela Köhler; Cornelis J. F. Van Noorden

Cathepsin B is a lysosomal cysteine proteinase that may participate in cancer progression. We compared localization of its protein and activity during progression of human colorectal cancer. In adenomas and carcinomas, protein expression and, particularly, activity were elevated compared with those in normal colorectal mucosa. In normal mucosa, cathepsin B protein expression was moderate in stroma and variable in epithelium, whereas activity was mainly present in distinct areas of stroma directly underneath the surface of the colon and in epithelium at the surface of the colon. Stroma in adenomas and carcinomas contained moderate to high protein levels but little activity except for areas of angiogenesis, inflammation, and necrosis, in which activity was high. In adenomas and the majority of well-differentiated carcinomas and moderately differentiated carcinomas, cathepsin B protein and activity were found in granular form in the epithelium, close to the basement membrane. Protein and activity levels were low and diffusely distributed in cancer cells in the remainder of the well-differentiated and moderately differentiated carcinomas and in all poorly differentiated carcinomas. Invasive fronts in most cancers contained moderate protein levels but high activity. We conclude that (a) activity localization is essential to understand the role of cathepsin B in cancer progression, and (b) cathepsin B activity in human colon is associated with invasion of cancer cells, endothelial cells, and inflammatory cells, and in cell death, both apoptotic and necrotic.


Human Mutation | 2010

Segregation of Non-p.R132H Mutations in IDH1 in Distinct Molecular Subtypes of Glioma

Lonneke Gravendeel; Nanne K. Kloosterhof; Linda B. C. Bralten; Ronald van Marion; Hendrikus J Dubbink; Winand N.M. Dinjens; Fonnet E. Bleeker; Casper C. Hoogenraad; Erna Michiels; Johan M. Kros; Martin van den Bent; Peter A. E. Sillevis Smitt; Pim J. French

Mutations in the gene encoding the isocitrate dehydrogenase 1 gene (IDH1) occur at a high frequency (up to 80%) in many different subtypes of glioma. In this study, we have screened for IDH1 mutations in a cohort of 496 gliomas. IDH1 mutations were most frequently observed in low grade gliomas with c.395G>A (p.R132H) representing >90% of all IDH1 mutations. Interestingly, non‐p.R132H mutations segregate in distinct histological and molecular subtypes of glioma. Histologically, they occur sporadically in classic oligodendrogliomas and at significantly higher frequency in other grade II and III gliomas. Genetically, non‐p.R132H mutations occur in tumors with TP53 mutation, are virtually absent in tumors with loss of heterozygosity on 1p and 19q and accumulate in distinct (gene‐expression profiling based) intrinsic molecular subtypes. The IDH1 mutation type does not affect patient survival. Our results were validated on an independent sample cohort, indicating that the IDH1 mutation spectrum may aid glioma subtype classification. Functional differences between p.R132H and non‐p.R132H mutated IDH1 may explain the segregation in distinct glioma subtypes.


Neuro-oncology | 2014

The combination of IDH1 mutations and MGMT methylation status predicts survival in glioblastoma better than either IDH1 or MGMT alone

Remco J. Molenaar; D. Verbaan; Simona Lamba; Carlo Zanon; Judith W. Jeuken; Sandra H.E. Boots-Sprenger; Pieter Wesseling; Theo J.M. Hulsebos; Dirk Troost; Angela A.G. van Tilborg; Sieger Leenstra; W. Peter Vandertop; Alberto Bardelli; Cornelis J. F. Van Noorden; Fonnet E. Bleeker

BACKGROUND Genetic and epigenetic profiling of glioblastomas has provided a comprehensive list of altered cancer genes of which only O(6)-methylguanine-methyltransferase (MGMT) methylation is used thus far as a predictive marker in a clinical setting. We investigated the prognostic significance of genetic and epigenetic alterations in glioblastoma patients. METHODS We screened 98 human glioblastoma samples for genetic and epigenetic alterations in 10 genes and chromosomal loci by PCR and multiplex ligation-dependent probe amplification (MLPA). We tested the association between these genetic and epigenetic alterations and glioblastoma patient survival. Subsequently, we developed a 2-gene survival predictor. RESULTS Multivariate analyses revealed that mutations in isocitrate dehydrogenase 1 (IDH1), promoter methylation of MGMT, irradiation dosage, and Karnofsky Performance Status (KFS) were independent prognostic factors. A 2-gene predictor for glioblastoma survival was generated. Based on the genetic and epigenetic status of IDH1 and MGMT, glioblastoma patients were stratified into 3 clinically different genotypes: glioblastoma patients with IDH1mt/MGMTmet had the longest survival, followed by patients with IDH1mt/MGMTunmet or IDH1wt/MGMTmet, and patients with IDH1wt/MGMTunmet had the shortest survival. This 2-gene predictor was an independent prognostic factor and performed significantly better in predicting survival than either IDH1 mutations or MGMT methylation alone. The predictor was validated in 3 external datasets. DISCUSSION The combination of IDH1 mutations and MGMT methylation outperforms either IDH1 mutations or MGMT methylation alone in predicting survival of glioblastoma patients. This information will help to increase our understanding of glioblastoma biology, and it may be helpful for baseline comparisons in future clinical trials.


PLOS ONE | 2009

Mutational profile of GNAQQ209 in human tumors.

Simona Lamba; Lara Felicioni; Fiamma Buttitta; Fonnet E. Bleeker; Sara Malatesta; Vincenzo Corbo; Aldo Scarpa; Monica Rodolfo; Margaret A. Knowles; Milo Frattini; Antonio Marchetti; Alberto Bardelli

Background Frequent somatic mutations have recently been identified in the ras-like domain of the heterotrimeric G protein α-subunit (GNAQ) in blue naevi 83%, malignant blue naevi (50%) and ocular melanoma of the uvea (46%). The mutations exclusively affect codon 209 and result in GNAQ constitutive activation which, in turn, acts as a dominant oncogene. Methodology To assess if the mutations are present in other tumor types we performed a systematic mutational profile of the GNAQ exon 5 in a panel of 922 neoplasms, including glioblastoma, gastrointestinal stromal tumors (GIST), acute myeloid leukemia (AML), blue naevi, skin melanoma, bladder, breast, colorectal, lung, ovarian, pancreas, and thyroid carcinomas. Principal Findings We detected the previously reported mutations in 6/13 (46%) blue naevi. Changes affecting Q209 were not found in any of the other tumors. Our data indicate that the occurrence of GNAQ mutations display a unique pattern being present in a subset of melanocytic tumors but not in malignancies of glial, epithelial and stromal origin analyzed in this study.


Annals of Oncology | 2015

Digital PCR quantification of MGMT methylation refines prediction of clinical benefit from alkylating agents in glioblastoma and metastatic colorectal cancer

Ludovic Barault; Alessio Amatu; Fonnet E. Bleeker; Catia Moutinho; Chiara Falcomatà; V. Fiano; Andrea Cassingena; Giulia Siravegna; Massimo Milione; Paola Cassoni; F. de Braud; R. Rudà; Riccardo Soffietti; Tiziana Venesio; Alberto Bardelli; Pieter Wesseling; P. C. de Witt Hamer; Filippo Pietrantonio; S. Siena; Manel Esteller; Andrea Sartore-Bianchi; F Di Nicolantonio

BACKGROUND O(6)-methyl-guanine-methyl-transferase (MGMT) silencing by promoter methylation may identify cancer patients responding to the alkylating agents dacarbazine or temozolomide. PATIENTS AND METHODS We evaluated the prognostic and predictive value of MGMT methylation testing both in tumor and cell-free circulating DNA (cfDNA) from plasma samples using an ultra-sensitive two-step digital PCR technique (methyl-BEAMing). Results were compared with two established techniques, methylation-specific PCR (MSP) and Bs-pyrosequencing. RESULTS Thresholds for MGMT methylated status for each technique were established in a training set of 98 glioblastoma (GBM) patients. The prognostic and the predictive value of MGMT methylated status was validated in a second cohort of 66 GBM patients treated with temozolomide in which methyl-BEAMing displayed a better specificity than the other techniques. Cutoff values of MGMT methylation specific for metastatic colorectal cancer (mCRC) tissue samples were established in a cohort of 60 patients treated with dacarbazine. In mCRC, both quantitative assays methyl-BEAMing and Bs-pyrosequencing outperformed MSP, providing better prediction of treatment response and improvement in progression-free survival (PFS) (P < 0.001). Ability of methyl-BEAMing to identify responding patients was validated in a cohort of 23 mCRC patients treated with temozolomide and preselected for MGMT methylated status according to MSP. In mCRC patients treated with dacarbazine, exploratory analysis of cfDNA by methyl-BEAMing showed that MGMT methylation was associated with better response and improved median PFS (P = 0.008). CONCLUSIONS Methyl-BEAMing showed high reproducibility, specificity and sensitivity and was applicable to formalin-fixed paraffin-embedded tissues and cfDNA. This study supports the quantitative assessment of MGMT methylation for clinical purposes since it could refine prediction of response to alkylating agents.


Modern Pathology | 2013

Significance of complete 1p/19q co-deletion, IDH1 mutation and MGMT promoter methylation in gliomas: use with caution.

Sandra H.E. Boots-Sprenger; Angelique Sijben; Jos Rijntjes; Bastiaan Tops; Albert J. Idema; Andreana L. Rivera; Fonnet E. Bleeker; Anja Gijtenbeek; Kristin Diefes; Lindsey Heathcock; Kenneth D. Aldape; Judith W. M. Jeuken; Pieter Wesseling

The histopathological diagnosis of diffuse gliomas often lacks the precision that is needed for tailored treatment of individual patients. Assessment of the molecular aberrations will probably allow more robust and prognostically relevant classification of these tumors. Markers that have gained a lot of interest in this respect are co-deletion of complete chromosome arms 1p and 19q, (hyper)methylation of the MGMT promoter and IDH1 mutations. The aim of this study was to assess the prognostic significance of complete 1p/19q co-deletion, MGMT promoter methylation and IDH1 mutations in patients suffering from diffuse gliomas. The presence of these molecular aberrations was investigated in a series of 561 diffuse astrocytic and oligodendroglial tumors (low grade n=110, anaplastic n=118 and glioblastoma n=333) and correlated with age at diagnosis and overall survival. Complete 1p/19q co-deletion, MGMT promoter methylation and/or IDH1 mutation generally signified a better prognosis for patients with a diffuse glioma including glioblastoma. However, in all 10 patients with a histopathological diagnosis of glioblastoma included in this study complete 1p/19q co-deletion was not associated with improved survival. Furthermore, in glioblastoma patients >50 years of age the favorable prognostic significance of IDH1 mutation and MGMT promoter methylation was absent. In conclusion, molecular diagnostics is a powerful tool to obtain prognostically relevant information for glioma patients. However, for individual patients the molecular information should be interpreted with caution and weighed in the context of parameters such as age and histopathological diagnosis.


Cancer Research | 2015

Radioprotection of IDH1-Mutated Cancer Cells by the IDH1-Mutant Inhibitor AGI-5198

Remco J. Molenaar; Dennis Botman; Myrthe A Smits; Vashendriya V.V. Hira; Sanne A. M. van Lith; Jan Stap; Peter Henneman; Mohammed Khurshed; Krissie Lenting; Adri Mul; Dionysia Dimitrakopoulou; Cornelis M. van Drunen; Ron A. Hoebe; Tomas Radivoyevitch; Johanna W. Wilmink; Jaroslaw P. Maciejewski; W. Peter Vandertop; William Leenders; Fonnet E. Bleeker; Cornelis J. F. Van Noorden

Isocitrate dehydrogenase 1 (IDH1) is mutated in various types of human cancer to IDH1(R132H), a structural alteration that leads to catalysis of α-ketoglutarate to the oncometabolite D-2-hydroxyglutarate. In this study, we present evidence that small-molecule inhibitors of IDH1(R132H) that are being developed for cancer therapy may pose risks with coadministration of radiotherapy. Cancer cells heterozygous for the IDH1(R132H) mutation exhibited less IDH-mediated production of NADPH, such that after exposure to ionizing radiation (IR), there were higher levels of reactive oxygen species, DNA double-strand breaks, and cell death compared with IDH1 wild-type cells. These effects were reversed by the IDH1(R132H) inhibitor AGI-5198. Exposure of IDH1 wild-type cells to D-2-hydroxyglutarate was sufficient to reduce IDH-mediated NADPH production and increase IR sensitivity. Mechanistic investigations revealed that the radiosensitivity of heterozygous cells was independent of the well-described DNA hypermethylation phenotype in IDH1-mutated cancers. Thus, our results argue that altered oxidative stress responses are a plausible mechanism to understand the radiosensitivity of IDH1-mutated cancer cells. Further, they offer an explanation for the relatively longer survival of patients with IDH1-mutated tumors, and they imply that administration of IDH1(R132H) inhibitors in these patients may limit irradiation efficacy in this setting.

Collaboration


Dive into the Fonnet E. Bleeker's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

W. Peter Vandertop

VU University Medical Center

View shared research outputs
Top Co-Authors

Avatar

Dirk Troost

University of Amsterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge