Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fouad Dabboussi is active.

Publication


Featured researches published by Fouad Dabboussi.


BMC Infectious Diseases | 2014

Children of Senegal River Basin show the highest prevalence of Blastocystis sp. ever observed worldwide

Dima El Safadi; Lobna Gaayeb; Dionigia Meloni; Amandine Cian; Philippe Poirier; Ivan Wawrzyniak; Frédéric Delbac; Fouad Dabboussi; Laurence Delhaes; Modou Seck; Monzer Hamze; Gilles Riveau; Eric Viscogliosi

BackgroundBlastocystis sp. is currently the most common intestinal protist found in human feces and considered an emerging parasite with a worldwide distribution. Because of its potential impact in public health, we reinforced the picture of Blastocystis sp. prevalence and molecular subtype distribution in Africa by performing the first survey of this parasite in Senegal.MethodsStool samples from 93 symptomatic presenting with various gastrointestinal disorders or asymptomatic children living in three villages of the Senegal River Basin were tested for the presence of Blastocystis sp. by non-quantitative and quantitative PCR using primer pairs targeting the SSU rDNA gene. Positive samples were subtyped to investigate the frequency of Blastocystis sp. subtypes in our cohort and the distribution of subtypes in the symptomatic and asymptomatic groups of children.ResultsBy the use of molecular tools, all 93 samples were found to be positive for Blastocystis sp. indicating a striking parasite prevalence of 100%. Mixed infections by two or three subtypes were identified in eight individuals. Among a total of 103 subtyped isolates, subtype 3 was most abundant (49.5%) followed by subtype 1 (28.2%), subtype 2 (20.4%) and subtype 4 (1.9%). Subtype 3 was dominant in the symptomatic group while subtypes 1 and 2 were detected with equal frequency in both symptomatic and asymptomatic groups. The distribution of subtypes was compared with those available in other African countries and worldwide. Comparison confirmed that subtype 4 is much less frequently detected or absent in Africa while it is commonly found in Europe. Potential sources of Blastocystis sp. infection including human-to-human, zoonotic, and waterborne transmissions were also discussed.ConclusionsThe prevalence of Blastocystis sp. in our Senegalese population was the highest prevalence ever recovered worldwide for this parasite by reaching 100%. All cases were caused by subtypes 1, 2, 3 and 4 with a predominance of subtype 3. More than half of the children infected by Blastocystis sp. presented various gastrointestinal disorders. Such high prevalence of blastocystosis in developing countries makes its control a real challenge for public health authorities.


International Journal of Infectious Diseases | 2014

First report of blaNDM-1-producing Acinetobacter baumannii isolated in Lebanon from civilians wounded during the Syrian war

Rayane Rafei; Fouad Dabboussi; Monzer Hamze; Matthieu Eveillard; Carole Lemarié; Hassan Mallat; Jean-Marc Rolain; Marie-Laure Joly-Guillou; Marie Kempf

OBJECTIVES The emergence of carbapenem-resistant Acinetobacter baumannii has been observed worldwide. We describe the first detection of A. baumannii carrying the blaNDM-1 gene in Lebanon, isolated from Syrian patients wounded during the civil war. METHODS Four carbapenem-resistant A. baumannii strains isolated in 2012 in the Tripoli Government Hospital, Lebanon, from civilians wounded during the Syrian war, were analysed. Susceptibility was determined by disk diffusion testing, and resistance to carbapenems was confirmed by Etest. The presence of blaOXA-23-like, blaOXA-24-like, blaOXA-58-like, blaOXA-143-like, and blaNDM was investigated by PCR. Clonal relationships were studied by pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and blaOXA-51 sequence-based typing. RESULTS All isolates harboured the blaNDM-1 gene and were negative for other tested carbapenemases. They all belonged to the sequence type 85 and formed a single cluster by PFGE. Finally, blaOXA-51-like gene sequencing revealed the presence of the blaOXA-94 variant in all four isolates. CONCLUSION These findings show that Syria constitutes a reservoir for NDM-1-producing bacteria. These results also highlight the need for effective measures to stop the threatening spread of such strains.


Applied and Environmental Microbiology | 2015

Extrahuman Epidemiology of Acinetobacter baumannii in Lebanon

Rayane Rafei; Monzer Hamze; Hélène Pailhoriès; Matthieu Eveillard; Laurent Marsollier; Marie-Laure Joly-Guillou; Fouad Dabboussi; Marie Kempf

ABSTRACT The presence of Acinetobacter baumannii outside hospitals is still a controversial issue. The objective of our study was to explore the extrahospital epidemiology of A. baumannii in Lebanon. From February 2012 to October 2013, a total of 73 water samples, 51 soil samples, 37 raw cow milk samples, 50 cow meat samples, 7 raw cheese samples, and 379 animal samples were analyzed by cultural methods for the presence of A. baumannii. Species identification was performed by rpoB gene sequencing. Antibiotic susceptibility was investigated, and the A. baumannii population was studied by two genotyping approaches: multilocus sequence typing (MLST) and bla OXA-51 sequence-based typing (SBT). A. baumannii was detected in 6.9% of water samples, 2.7% of milk samples, 8.0% of meat samples, 14.3% of cheese samples, and 7.7% of animal samples. All isolates showed a susceptible phenotype against most of the antibiotics tested and lacked carbapenemase-encoding genes, except one that harbored a bla OXA-143 gene. MLST analysis revealed the presence of 36 sequence types (STs), among which 24 were novel STs reported for the first time in this study. bla OXA-51 SBT showed the presence of 34 variants, among which 21 were novel and all were isolated from animal origins. Finally, 30 isolates had new partial rpoB sequences and were considered putative new Acinetobacter species. In conclusion, animals can be a potential reservoir for A. baumannii and the dissemination of new emerging carbapenemases. The roles of the novel animal clones identified in community-acquired infections should be investigated.


Journal of Antimicrobial Chemotherapy | 2014

Carbapenemase and virulence factors of Enterobacteriaceae in North Lebanon between 2008 and 2012: evolution via endemic spread of OXA-48

Racha Beyrouthy; F. Robin; Fouad Dabboussi; Hassan Mallat; Monzer Hamze; Richard Bonnet

OBJECTIVES To investigate the resistance to carbapenems in Enterobacteriaceae and the underlying resistance mechanisms in North Lebanon between 2008 and 2012. METHODS A total of 2767 Enterobacteriaceae isolates recovered from clinical samples collected in Nini Hospital (North Lebanon) were screened for a decrease in susceptibility or resistance to ertapenem (MIC >0.25 mg/L). Enterobacteriaceae were similarly screened from 183 faecal samples obtained from non-hospitalized patients. The bacterial isolates were assigned to clonal lineages by PFGE and multilocus sequence typing. Carbapenemase genes, their genetic environment and virulence genes were characterized by molecular approaches. RESULTS The rate of Enterobacteriaceae exhibiting a decrease in susceptibility or resistance to ertapenem increased from 0.4% in 2008-10 to 1.6% in 2012 for the clinical isolates recovered from hospitalized patients. Of these isolates, scattered among seven enterobacterial species, 88% produced OXA-48 carbapenemase. However, Escherichia coli represented 73% of the OXA-48-producing Enterobacteriaceae collected in 2012 at this hospital. During the faecal carriage study performed in non-hospitalized patients, E. coli was the only species producing OXA-48. The bla(OXA-48) gene was mainly found within Tn1999.2-type transposons inserted into E. coli chromosomes or in ∼50, ∼62 or ∼85 kb plasmids. The plasmids and chromosomal inserts were related to pOXA-48a. Molecular typing of the isolates revealed clonal diversity of E. coli and Klebsiella pneumoniae producing OXA-48. OXA-48 was observed in all major E. coli phylogroups, including D and B2, and isolates harbouring virulence genes of extra-intestinal pathogenic E. coli. Although not belonging to highly virulent capsular genotypes, the OXA-48-producing K. pneumoniae harboured genes associated with virulence or host colonization. CONCLUSIONS Horizontal transfer of related plasmids has facilitated the spread of the bla(OXA-48) gene into several Enterobacteriaceae species, including virulent E. coli. Their clonal diversity and the presence of faecal carriers in the community suggest an endemic spread of OXA-48.


PLOS Neglected Tropical Diseases | 2016

Prevalence and Risk Factors for Intestinal Protozoan Infections with Cryptosporidium, Giardia, Blastocystis and Dientamoeba among Schoolchildren in Tripoli, Lebanon

Marwan Osman; Dima El Safadi; Amandine Cian; Sadia Benamrouz; Céline Nourrisson; Philippe Poirier; Bruno Pereira; Romy Razakandrainibe; Anthony Pinon; Céline Lambert; Ivan Wawrzyniak; Fouad Dabboussi; Frédéric Delbac; Loïc Favennec; Monzer Hamze; Eric Viscogliosi; Gabriela Certad

Background Intestinal protozoan infections are confirmed as major causes of diarrhea, particularly in children, and represent a significant, but often neglected, threat to public health. No recent data were available in Lebanon concerning the molecular epidemiology of protozoan infections in children, a vulnerable population at high risk of infection. Methodology and Principal Findings In order to improve our understanding of the epidemiology of intestinal pathogenic protozoa, a cross-sectional study was conducted in a general pediatric population including both symptomatic and asymptomatic subjects. After obtaining informed consent from the parents or legal guardians, stool samples were collected in January 2013 from 249 children in 2 schools in Tripoli, Lebanon. Information obtained from a standard questionnaire included demographic characteristics, current symptoms, socioeconomic status, source of drinking water, and personal hygiene habits. After fecal examination by both microscopy and molecular tools, the overall prevalence of parasitic infections was recorded as 85%. Blastocystis spp. presented the highest infection rate (63%), followed by Dientamoeba fragilis (60.6%), Giardia duodenalis (28.5%) and Cryptosporidium spp. (10.4%). PCR was also performed to identify species and genotypes of Cryptosporidium, subtypes of Blastocystis, and assemblages of Giardia. Statistical analysis using a logistic regression model showed that contact with family members presenting gastrointestinal disorders was the primary risk factor for transmission of these protozoa. Conclusions This is the first study performed in Lebanon reporting the prevalence and the clinical and molecular epidemiological data associated with intestinal protozoan infections among schoolchildren in Tripoli. A high prevalence of protozoan parasites was found, with Blastocystis spp. being the most predominant protozoans. Although only 50% of children reported digestive symptoms, asymptomatic infection was observed, and these children may act as unidentified carriers. This survey provides necessary information for designing prevention and control strategies to reduce the burden of these protozoan infections, especially in children.


American Journal of Tropical Medicine and Hygiene | 2013

Molecular epidemiology of Blastocystis in Lebanon and correlation between subtype 1 and gastrointestinal symptoms.

Dima El Safadi; Dionigia Meloni; Philippe Poirier; Marwan Osman; Amandine Cian; Lobna Gaayeb; Ivan Wawrzyniak; Frédéric Delbac; Hicham El Alaoui; Laurence Delhaes; Eduardo Dei-Cas; Hassan Mallat; Fouad Dabboussi; Monzer Hamze; Eric Viscogliosi

Blastocystis is the most common eukaryotic parasite in the intestinal tract of humans. Because of its potential impact in public health, we acquired the first data concerning the prevalence of this parasite and the frequency of the Blastocystis subtypes (STs) in the Lebanese population. In this study, fecal samples from 220 Lebanese symptomatic and asymptomatic patients were collected and a total of 42 patients (19%) were identified as positive for this parasite by direct-light microscopy of smears. Among these, 36 Blastocystis isolates were genotyped using partial small subunit ribosomal RNA gene sequencing. The ST distribution in the present Lebanese population was as follows: ST3 (33.3%), ST2 (33.3%), ST1 (30.6%), and ST4 (2.8%). These data were compared with those available in other Middle Eastern and neighboring countries. Finally, ST1 was significantly more prevalent among symptomatic patients of this Lebanese population.


BMC Microbiology | 2015

Molecular epidemiology of Acinetobacter baumannii in different hospitals in Tripoli, Lebanon using bla OXA-51-like sequence based typing

Rayane Rafei; Hélène Pailhoriès; Monzer Hamze; Matthieu Eveillard; Hassan Mallat; Fouad Dabboussi; Marie-Laure Joly-Guillou; Marie Kempf

BackgroundA. baumannii has emerged as an important nosocomial pathogen with an outstanding ability to acquire multidrug resistant mechanisms. In this study, we investigate the molecular epidemiology and carbapenem resistance mechanisms of A. baumannii in Tripoli, Northern Lebanon.MethodsOne hundred sixteen non-duplicate isolates isolated between 2011 and 2013 in different hospitals in Tripoli, Lebanon from Lebanese patients and wounded Syrian patients during Syrian war were studied. Antibiotic susceptibility testing was determined by agar disc diffusion and Etest. Carbapenemase-encoding genes were investigated by PCR. All isolates were typed by blaOXA-51-like sequence based typing (SBT) and 57 isolates were also analysed by MLST using Pasteur’s scheme followed by eBURST analysis.ResultsOf the 116 isolates, 70 (60 %) showed a carbapenem resistance phenotype. The blaOXA-23 with an upstream insertion of ISAba1 was the major carbapenem resistance mechanism and detected in 65 isolates. Five isolates, including four from wounded Syrian patients and one from a Lebanese patient, were positive for blaNDM-1. blaOXA-51-like SBT revealed the presence of 14 variants, where blaOXA-66 was the most common and present in 73 isolates, followed by blaOXA-69 in 20 isolates. MLST analysis identified 17 sequence types (ST) and showed a concordance with blaOXA-51-like SBT. Each clonal complex (CC) had a specific blaOXA-51-like sequence such as CC2, which harboured blaOXA-66 variant, and CC1 harbouring blaOXA-69 variant. NDM-1 producing isolates belonged to ST85 (4 Syrian isolates) and ST25 (1 Lebanese isolate).ConclusionsOur results showed a successful predominance of international clone 2 with a widespread occurrence of OXA-23 carbapenemase in Lebanese hospitals. These findings emphasise the urgent need of effective measures to control the spread of A. baumannii in this country.


Antimicrobial Agents and Chemotherapy | 2014

IS1R-Mediated Plasticity of IncL/M Plasmids Leads to the Insertion of blaOXA-48 into the Escherichia coli Chromosome

Racha Beyrouthy; F. Robin; Julien Delmas; Lucie Gibold; Guillaume Dalmasso; Fouad Dabboussi; Monzer Hamze; Richard Bonnet

ABSTRACT The OXA-48 carbapenemase is mainly encoded by ∼62-kb IncL/M plasmids. However, chromosome-mediated genes have been observed in Escherichia coli isolates. In this work, we investigated the genetic environment of OXA-48 in members of the family Enterobacteriaceae (n = 22) to understand how the OXA-48-encoding gene is transferred into the E. coli chromosome. The OXA-48-encoding gene was located within intact Tn1999.2 transposons in the ∼62-kb plasmids or within a truncated variant of Tn1999.2 for the OXA-48-encoding genes located in the chromosomes of E. coli bacteria. The analysis of the Tn1999.2 genetic environment revealed an inverted orientation of the transposon in five ∼62-kb plasmids (5/14 [35%]) and in all chromosome inserts (n = 8). The sequencing of pRA35 plasmid showed that this orientation of Tn1999.2 and the acquisition of an IS1R insertion sequence generated a 21.9-kb IS1R-based composite transposon encoding OXA-48 and designated Tn6237. The sequencing of a chromosomal insert encoding OXA-48 also revealed this new transposon in the E. coli chromosome. PCR mapping showed the presence of this element in all strains harboring an OXA-48-encoding chromosomal insert. However, different insertion sites of this transposon were observed in the E. coli chromosome. Overall, these findings indicate a plasticity of the OXA-48 genetic environment mediated by IS1R insertion sequences. The insertion sequences can induce the transfer of the OXA-encoding gene into E. coli chromosomes and thereby promote its persistence and expression at low levels.


Journal of Antimicrobial Chemotherapy | 2013

Chromosome-mediated OXA-48 carbapenemase in highly virulent Escherichia coli

Racha Beyrouthy; F. Robin; Antony Cougnoux; Guillaume Dalmasso; Arlette Darfeuille-Michaud; Hassan Mallat; Fouad Dabboussi; Monzer Hamze; Richard Bonnet

OBJECTIVES Bacteria multiresistant to antibiotics are widely supposed to be weakly virulent. However, the virulence traits of carbapenem-resistant Enterobacteriaceae have not been investigated. In this work, we investigated the virulence and resistance mechanism of an extraintestinal pathogenic Escherichia coli (ExPEC) strain (LEB15) that exhibited decreased susceptibility to carbapenems. METHODS The MICs were determined by a microdilution method. The β-lactamase-encoding gene was identified by PCR and sequencing, and the genetic environment was analysed by PFGE and PCR mapping. The genetic background was investigated by multilocus sequence typing (MLST). Virulence-factor-encoding genes and pathogenic islands (PAIs) were detected by multiplex PCR. Virulence was assessed in a mouse sepsis model. RESULTS Strain LEB15 produced a chromosomal OXA-48 carbapenemase. The complete bla(OXA-48)-encoding Tn1999.2 transposon was inserted in the LEB15 chromosome. The strain belonged to an MLST cluster of emerging ExPEC strains (ST-127/ST-22). It had a high pathogenic score and eight PAIs (I536, II536, III536, IV536, VI536, I(CFT073), II(CFT073) and II(J96)) and induced an unusually high lethality in the mouse sepsis model. CONCLUSIONS Strain LEB15 combines both an atypical broad accumulation of virulence factors, which confers a strong killer phenotype, and a decrease in susceptibility to carbapenems following the chromosomal acquisition of bla(OXA-48). This association of virulence and carbapenemase in E. coli strains might pose major problems in the future for E. coli infection management.


Future Microbiology | 2014

Current molecular methods in epidemiological typing of Acinetobacter baumannii

Rayane Rafei; Marie Kempf; Matthieu Eveillard; Fouad Dabboussi; Monzer Hamze; Marie-Laure Joly-Guillou

The emergence of Acinetobacter baumannii during recent decades as an important nosocomial pathogen responsible of worldwide, intensively documented, outbreaks has resulted in a need for effective epidemiological typing methods. Throughout the years, many typing methods for A. baumannii epidemiological studies have been proposed from phenotypic to molecular methods. Currently, the use of phenotypic typing methods have declined considerably and been progressively replaced by molecular methods. In this review, we introduce the current molecular methods available for A. baumannii typing. Each method has its own advantages and disadvantages, and the selection of an appropriate genotyping method depends on studied objectives. This review sheds light on questions in different epidemiological settings and most molecular methods used to fit these objectives.

Collaboration


Dive into the Fouad Dabboussi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Eric Viscogliosi

Lille University of Science and Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge