Franc Janžekovič
University of Maribor
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Franc Janžekovič.
Physiological Entomology | 2005
Dušan Devetak; Andreja Špernjak; Franc Janžekovič
Abstract. The larvae of the antlion Euroleon nostras are pit‐builders, constructing pitfall traps in loose sand. The number of pits and the pit diameter are recorded when larvae are kept in substrates with different particle sizes. The most convenient pit‐building sand fractions are two fractions with fine sand (≤ 0.23 mm; 0.23–0.54 mm). The largest pits are constructed in sand with a particle size of 0.23–0.54 mm. In this sand fraction, larvae of all three instars most readily build pits. No pits are constructed in sand with a particle size greater than 1.54 mm. First‐ and second‐instar larvae avoid building pits in substrates of particle size 1–1.54 mm, but third‐instar larvae construct pits in this sand fraction. It is assumed that the antlion is capable of distinguishing between substrate types and this hypothesis is tested by giving larvae the choice of building a pit in one of four particle‐size fractions. Larvae of all three instars prefer to build pits in the fraction with a particle size of 0.23–0.54 mm. Only third‐instar larvae build pits in all four fractions, but only occasionally in the coarser fraction.
Archive | 2012
Franc Janžekovič; Tone Novak
Principal Component Analysis, PCA, is a multivariate statistical technique that uses orthogonal transformation to convert a set of correlated variables into a set of orthogonal, uncorrelated axes called principal components (James & McCulloch 1990; Robertson et al., 2001; Legendre & Legendre 1998; Gotelli & Ellison 2004). Ecologists are most frequently dealing with multivariate datasets. This is especially true in field ecology, and this is why PCA is an attractive and frequently used method of data ordination in ecology. PCA enables condensation of data on a multivariate phenomenon into its main, representative features by projection of the data into a two-dimensional presentation. The two created resource axes are independent, and although they reduce the number of dimensions–i.e. the original data complexity–they maintain much of the original relationship between the variables: i.e., information or explained variance (Litvak & Hansell 1990). This is helpful in focusing attention on the main characteristics of the phenomenon under study. It is convenient that, if the first few principal components (PCs) explain a high percentage of variance, environmental variables that are not correlated with the first few PCs can be disregarded in the analysis (Toepfer et al., 1998). In addition, applying PCA has become relatively userfriendly because of the numerous programs that assist in carrying out the computational procedure with ease (Doledec et al., 2000; Guisan & Zimmerman 2000; Robertson et al., 2001; Rissler & Apodaca 2007; Marmion et al., 2009).
International Journal of Speleology | 2014
Tone Novak; Nina Šajna; Estera Antolinc; Saška Lipovšek; Dušan Devetak; Franc Janžekovič
*[email protected] morphological adaptation and do not complete their life cycle there. 2) Troglophiles alternate between the epigean and hypogean habitats or live permanently in subterranean habitats; they show some moderate adaptation, such as partly reduced eyes and adaptations to compensate for the lack of visual orientation. Some among these do not complete their life cycle underground, while others do. 3) Troglobionts complete their life cycle in a hypogean environment, and most of them clearly show troglomorphic characteristics, like eyelessness and depigmentation. In contrast to the frequent preference for these three ecological groups, Novak et al. (2012) found that, on the one hand, trogloxenes and troglophiles together represent a group of variously adapted species, rather than two ecologically clearly separated categories, and, on the other hand, troglobionts divide into two strictly separated subgroups. Invertebrates are ectothermal and at their critical thermal minimum they enter chill-coma, where neuromuscular transmission and movement cease INTRODUCTION
Arthropod Structure & Development | 2011
Saška Lipovšek; Tone Novak; Franc Janžekovič; Maria Anna Pabst
The cave crickets Troglophilus cavicola and Troglophilus neglectus are the most widely distributed European species of the family Rhaphidophoridae. Their life cycles span two years. They overwinter twice in caves in 4-6 months lasting diapause, T. cavicola in warmer microhabitats. In caves, older T. cavicola undergo sexual maturation, while T. neglectus do not. We hypothesized that the use of energy-supplying compounds and reserve proteins in the fat body is more extensive in T. cavicola than in T. neglectus. We analyzed the contents and morphology of lipid droplets, glycogen rosettes and protein granula at the beginning, the middle and the end of overwintering applying optic, TEM and biochemical methods. In all individuals, the fat body is composed of about 40 oval ribbons consisted of gradually changing adipocytes and urocytes. T. cavicola use glycogen continuously, and stop using lipids in the middle of overwintering, while this is inverse in T. neglectus. Till the middle of overwintering, all individuals exploit proteins, afterwards they are unevenly exploited. We found that the fat body is differently engaged in metabolism of both cave crickets during overwintering, supporting a more glycogen-dependent metabolism in T. cavicola, and a more lipid-dependent one in T. neglectus.
Arthropod Structure & Development | 2014
Saška Lipovšek; Franc Janžekovič; Tone Novak
Juvenile harvestmen Gyas annulatus overwinter in dormancy in hypogean habitats for 4-5 months. The ultrastructure of the autophagic structures in their midgut epithelium cells was studied by light microscopy, transmission electron microscopy (TEM) and immunofluorescence microscopy (IFM) during this non-feeding period. Before overwintering (November), autophagic structures were scarce. In the middle (January) and at the end of overwintering (March), phagophores, autophagosomes and autolysosomes were present in the cytoplasm of both the secretory and the digestive midgut epithelium cells, gradually increasing their abundance during overwintering. In addition, vacuolization of the cytoplasm intensified. Both processes are induced by starvation. Autophagic structures and cytoplasm vacuolization enable the reuse of the cells own components required for the maintenance of vital processes during dormancy. While TEM is a much more convenient method for recognition of the autophagic structure types and their ultrastructure, IFM enables exact counting of these structures.
Acta Theriologica | 2005
Boris Kryštufek; Franc Janžekovič
We studied phenotypic relationships among 13 samples of two rock mice species:Apodemus mystacinus (Danford and Alston, 1877) from Anatolia (n = 38) andA. epimelas (Nehring, 1902) from the Balkans (n = 71). Cartesian coordinates of landmarks were collected on the skull and on the occlusal projection of the upper molars (18 landmarks). Centroid size (a measure of overall size) suggested that molars vary independently of overall skull size in both species. Discriminant function analysis on relative warp scores classified >80% of specimens into the correct species, with the best results obtained for the ventral aspect of the skull and for molars. Projection of the 1st discriminant function scores against centroid size provided good separation between the two species. Analysis of vector displacements associated with extremes of variation suggested considerable phenetic differences on the ventral side of the skull and in the molar shape of the two species. The great majority of shifts in landmarks were in a longitudinal direction and the rearrangements of molar cusps were more complex than was the case with the cranium. A bivariate plot of the posterior hard palate length against the incisive foramen length separatedA. mystacinus andA. epimelas well.
Journal of Mammalogy | 2012
Boris Kryštufek; Tina Klenovšek; Elena V. Bužan; Anna Loy; Franc Janžekovič
Abstract We examined, in the context of phylogeny, variations in ventral cranial shape in Martinos vole (Dinaromys bogdanovi), a rare rodent endemic to the western Balkans. Our analysis was based on 138 complete adult skulls, which were pooled into 3 phylogeographic groups (Northwestern, Central, and Southeastern). These groups were retrieved in an earlier study based on a 555–base-pair fragment of mitochondrial cytochrome b gene, which suggested a stepping-stone pattern of southward expansion followed by allopatry. Ventral skull shape was analyzed with geometric morphometrics using 23 two-dimensional landmarks. The primary shape differences across groups are the sizes of the auditory bulla and the foramen magnum, the length of the incisive foramen, and the width of the rostrum. Consistent geographic trends in shape changes were rare, and size was stable across phylogeographic groups. Morphological relationships among groups closely resemble genetic distances, implying their neutral evolution rate. We suggest that the adaptive zone occupied by Martinos vole imposes narrow limits to its phenotypic variation. Under the strong pressures of stabilizing selection for the normative (intermediate) phenotype, random drift in isolated populations produced only minor deviations in the ventral cranium.
Arthropod Structure & Development | 2015
Saška Lipovšek; Tone Novak; Franc Janžekovič; Gerd Leitinger
The harvestmen Amilenus aurantiacus overwinter in diapause in hypogean habitats. The midgut diverticula have been studied microscopically (light microscopy, TEM) and biochemically (energy-storing compounds: lipids and glycogen) to analyze changes during this programmed starvation period. Throughout the investigated period, the epithelium of the midgut diverticula is composed of secretory cells, digestive cells and adipocytes. Additionally, after the middle of overwintering, the excretory cells appear, and two assemblages of secretory cells are present: the SC1 secretory cells are characterized by electron-dense cytoplasm with numerous protein granules, and the SC2 cells by an electron-lucent cytoplasm with fewer protein granules. The autophagic activity is observed from the middle of overwintering, indicating its vital role in providing nutrients during this non-feeding period. Lipids and glycogen are present in the midgut diverticula cells, except in the excretory cells. Measurements of the lipid droplet diameters and the lipid quantities yielded quite comparable information on their consumption. Lipids are gradually spent in both sexes, more rapidly in females, owing to ripening of the ovaries. Glycogen rates decrease towards the middle, and increase just before the end of overwintering, indicating that individuals are preparing for the epigean active ecophase.
Protoplasma | 2017
Saška Lipovšek; Franc Janžekovič; Tone Novak
The herald moths, Scoliopteryx libatrix, overwinter in hypogean habitats. The ultrastructure of their fat body (FB) cells and Malpighian tubule (MT) epithelial cells was studied by light microscopy and transmission electron microscopy, and essential biometric and biochemical measurements were performed. The FB was composed of adipocytes and sparse urocytes. The ultrastructure of both cells did not change considerably during this natural starvation period, except for rough endoplasmic reticulum (rER) which became more abundant in March females. In the cells, the reserve material consisted of numerous lipid droplets, glycogen rosettes, and protein granula. During overwintering, the lipid droplets diminished, and protein granula became laminated. The MTs consisted of a monolayer epithelium and individual muscle cells. The epithelial cells were attached to the basal lamina by numerous hemidesmosomes. The apical plasma membrane was differentiated into numerous microvilli, many of them containing mitochondria. Nuclei were surrounded by an abundant rER. There were numerous spherites in the perinuclear part of the cells. The basal plasma membrane formed infoldings with mitochondria in between. Nuclei were located either in the basal or in the central part of the cells. During overwintering, spherites were gradually exploited, and autophagic structures appeared: autophagosomes, autolysosomes, and residual bodies. There were no statistical differences between the sexes in any measured biometric and biochemical variables in the same time frames. The energy-supplying lipids and glycogen, and spherite stores were gradually spent during overwintering. In March, the augmented rER signified the intensification of synthetic processes prior to the epigean ecophase.
General and Comparative Endocrinology | 2013
Saška Lipovšek; Franc Janžekovič; Gerd Leitinger; Marjan Slak Rupnik
In this work we have compared the ultrastructural characteristics of major pancreatic endocrine cells, pituitary melanotrophs and adrenal chromaffin cells in the normal mouse strain (wild type, WT) and mice with a known secretory deficit, the Rab3a knockout strain (Rab3a KO). For this purpose, pancreata, pituitary glands and adrenal glands from the Rab3a KO and from the WT mice were analysed, using conventional transmission electron microscopy (TEM). In order to assess the significance of the presence of Rab3a proteins in the relevant cells, we focused primarily on their secretory vesicle morphology and distribution. Our results showed a comparable general morphology in Rab3a KO and WT in all assessed endocrine cell types. In all studied cell types, the distribution of secretory granules along the plasma membrane (number of docked and almost-docked vesicles) was comparable between Rab3a KO and WT mice. Specific differences were found in the diameters of their secretory vesicles, diameters of their electron-dense cores and the presence of autophagic structures in the cells of Rab3A KO mice only. Occasionally, individual electron-dense round vesicles were present inside autophagosome-like structures; these were possibly secretory vesicles or their remnants. The differences found in the diameters of the secretory vesicles confirm the key role of Rab3a proteins in controlling the balance between secretory vesicle biogenesis and degradation, and suggest that the ablation of this protein probably changes the nature of the reservoir of secretory vesicles available for regulated exocytosis.