Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frances H. Blaikie is active.

Publication


Featured researches published by Frances H. Blaikie.


Biochemistry | 2005

Lipophilic triphenylphosphonium cations as tools in mitochondrial bioenergetics and free radical biology.

Meredith F. Ross; Geoffrey F. Kelso; Frances H. Blaikie; Andrew M. James; Helena M. Cochemé; Aleksandra Filipovska; T. Da Ros; Thomas R. Hurd; Robin A. J. Smith; Michael P. Murphy

Lipophilic phosphonium cations were first used to investigate mitochondrial biology by Vladimir Skulachev and colleagues in the late 1960s. Since then, these molecules have become important tools for exploring mitochondrial bioenergetics and free radical biology. Here we review why these molecules are useful in mitochondrial research and outline some of the ways in which they are now being utilized.


Proceedings of the National Academy of Sciences of the United States of America | 2009

A mitochondria-targeted S-nitrosothiol modulates respiration, nitrosates thiols, and protects against ischemia-reperfusion injury

Tracy A. Prime; Frances H. Blaikie; Cameron Evans; Sergiy M. Nadtochiy; Andrew M. James; Christina C. Dahm; Dario A. Vitturi; Rakesh P. Patel; C. Robin Hiley; Irina Abakumova; Raquel Requejo; Edward T. Chouchani; Thomas R. Hurd; John F. Garvey; Cormac T. Taylor; Paul S. Brookes; Robin A. J. Smith; Michael P. Murphy

Nitric oxide (NO•) competitively inhibits oxygen consumption by mitochondria at cytochrome c oxidase and S-nitrosates thiol proteins. We developed mitochondria-targeted S-nitrosothiols (MitoSNOs) that selectively modulate and protect mitochondrial function. The exemplar MitoSNO1, produced by covalently linking an S-nitrosothiol to the lipophilic triphenylphosphonium cation, was rapidly and extensively accumulated within mitochondria, driven by the membrane potential, where it generated NO• and S-nitrosated thiol proteins. MitoSNO1-induced NO• production reversibly inhibited respiration at cytochrome c oxidase and increased extracellular oxygen concentration under hypoxic conditions. MitoSNO1 also caused vasorelaxation due to its NO• generation. Infusion of MitoSNO1 during reperfusion was protective against heart ischemia-reperfusion injury, consistent with a functional modification of mitochondrial proteins, such as complex I, following S-nitrosation. These results support the idea that selectively targeting NO• donors to mitochondria is an effective strategy to reversibly modulate respiration and to protect mitochondria against ischemia-reperfusion injury.


Journal of Biological Chemistry | 2002

Specific Modification of Mitochondrial Protein Thiols in Response to Oxidative Stress A PROTEOMICS APPROACH

Tsu-Kung Lin; Gillian Hughes; Aleksandra Muratovska; Frances H. Blaikie; Paul S. Brookes; Victor M. Darley-Usmar; Robin A. J. Smith; Michael P. Murphy

Mitochondria play a central role in redox-linked processes in the cell through mechanisms that are thought to involve modification of specific protein thiols, but this has proved difficult to assess. In particular, specific labeling and quantitation of mitochondrial protein cysteine residues have not been achieved due to the lack of reagents available that can be applied to the intact organelle or cell. To overcome these problems we have used a combination of mitochondrial proteomics and targeted labeling of mitochondrial thiols using a novel compound, (4-iodobutyl)triphenylphosphonium (IBTP). This lipophilic cation is accumulated by mitochondria and yields stable thioether adducts in a thiol-specific reaction. The selective uptake into mitochondria, due to the large membrane potential across the inner membrane, and the high pH of the matrix results in specific labeling of mitochondrial protein thiols by IBTP. Individual mitochondrial proteins that changed thiol redox state following oxidative stress could then be identified by their decreased reaction with IBTP and isolated by two-dimensional electrophoresis. We demonstrate the selectivity of IBTP labeling and use it to show that glutathione oxidation and exposure to anS-nitrosothiol or to peroxynitrite cause extensive redox changes to mitochondrial thiol proteins. In conjunction with blue native gel electrophoresis, we used IBTP labeling to demonstrate that thiols are exposed on the matrix faces of respiratory Complexes I, II, and IV. This novel approach enables measurement of the thiol redox state of individual mitochondrial proteins during oxidative stress and cell death. In addition the methodology has the potential to identify novel redox-dependent modulation of mitochondrial proteins.


Free Radical Biology and Medicine | 2008

A mitochondria-targeted nitroxide is reduced to its hydroxylamine by ubiquinol in mitochondria.

Jan Trnka; Frances H. Blaikie; Robin A. J. Smith; Michael P. Murphy

Piperidine nitroxides such as TEMPOL act as antioxidants in vivo due to their interconversion among nitroxide, hydroxylamine, and oxoammonium derivatives, but the mechanistic details of these reactions are unclear. As mitochondria are a significant site of piperidine nitroxide metabolism and action, we synthesized a mitochondria-targeted nitroxide, MitoTEMPOL, by conjugating TEMPOL to the lipophilic triphenylphosphonium cation. MitoTEMPOL was accumulated several hundred-fold into energized mitochondria where it was reduced to the hydroxylamine by direct reaction with ubiquinol. This reaction occurred by transfer of H() from ubiquinol to the nitroxide, with the ubisemiquinone radical product predominantly dismutating to ubiquinone and ubiquinol, together with a small amount reacting with oxygen to form superoxide. The piperidine nitroxides TEMPOL, TEMPO, and butylTEMPOL reacted similarly with ubiquinol in organic solvents but in mitochondrial membranes the rates varied in the order: MitoTEMPOL > butylTEMPOL > TEMPO > TEMPOL, which correlated with the extent of access of the nitroxide moiety to ubiquinol within the membrane. These findings suggest ways of using mitochondria-targeted compounds to modulate the coenzyme Q pool within mitochondria in vivo, and indicate that the antioxidant effects of mitochondria-targeted piperidine nitroxides can be ascribed to their corresponding hydroxylamines.


Annals of the New York Academy of Sciences | 2008

Mitochondria‐Targeted Antioxidants in the Treatment of Disease

Robin A. J. Smith; Victoria J. Adlam; Frances H. Blaikie; Abdul-Rahman B. Manas; Carolyn M. Porteous; Andrew M. James; Meredith F. Ross; Angela Logan; Helena M. Cochemé; Jan Trnka; Tracy A. Prime; Irina Abakumova; Bruce A. Jones; Aleksandra Filipovska; Michael P. Murphy

Mitochondrial oxidative damage is thought to contribute to a wide range of human diseases; therefore, the development of approaches to decrease this damage may have therapeutic potential. Mitochondria‐targeted antioxidants that selectively block mitochondrial oxidative damage and prevent some types of cell death have been developed. These compounds contain antioxidant moieties, such as ubiquinone, tocopherol, or nitroxide, that are targeted to mitochondria by covalent attachment to a lipophilic triphenylphosphonium cation. Because of the large mitochondrial membrane potential, the cations are accumulated within the mitochondria inside cells. There, the conjugated antioxidant moiety protects mitochondria from oxidative damage. Here, we outline some of the work done to date on these compounds and how they may be developed as therapies.


Biochemical Journal | 2006

Accumulation of lipophilic dications by mitochondria and cells

Meredith F. Ross; Tatiana Da Ros; Frances H. Blaikie; Tracy A. Prime; Carolyn M. Porteous; Inna I. Severina; Vladimir P. Skulachev; Henrik G. Kjaergaard; Robin A. J. Smith; Michael P. Murphy

Lipophilic monocations can pass through phospholipid bilayers and accumulate in negatively-charged compartments such as the mitochondrial matrix, driven by the membrane potential. This property is used to visualize mitochondria, to deliver therapeutic molecules to mitochondria and to measure the membrane potential. In theory, lipophilic dications have a number of advantages over monocations for these tasks, as the double charge should lead to a far greater and more selective uptake by mitochondria, increasing their therapeutic potential. However, the double charge might also limit the movement of lipophilic dications through phospholipid bilayers and little is known about their interaction with mitochondria. To see whether lipophilic dications could be taken up by mitochondria and cells, we made a series of bistriphenylphosphonium cations comprising two triphenylphosphonium moieties linked by a 2-, 4-, 5-, 6- or 10-carbon methylene bridge. The 5-, 6- and 10-carbon dications were taken up by energized mitochondria, whereas the 2- and 4-carbon dications were not. The accumulation of the dication was greater than that of the monocation methyltriphenylphosphonium. However, the uptake of dications was only described by the Nernst equation at low levels of accumulation, and beyond a threshold membrane potential of 90-100 mV there was negligible increase in dication uptake. Interestingly, the 5- and 6-carbon dications were not accumulated by cells, due to lack of permeation through the plasma membrane. These findings indicate that conjugating compounds to dications offers only a minor increase over monocations in delivery to mitochondria. Instead, this suggests that it may be possible to form dications within mitochondria that then remain within the cell.


Free Radical Research | 2009

Antioxidant properties of MitoTEMPOL and its hydroxylamine

Jan Trnka; Frances H. Blaikie; Angela Logan; Robin A. J. Smith; Michael P. Murphy

Piperidine nitroxides such as TEMPOL have been widely used as antioxidants in vitro and in vivo. MitoTEMPOL is a mitochondria-targeted derivative of TEMPOL designed to protect mitochondria from the oxidative damage that they accumulate, but once there is rapidly reduced to its hydroxylamine, MitoTEMPOL-H. As little is known about the antioxidant efficacy of hydroxylamines, this study has assessed the antioxidant activity of both MitoTEMPOL and MitoTEMPOL-H. The hydroxylamine was more effective at preventing lipid-peroxidation than MitoTEMPOL and decreased oxidative damage to mitochondrial DNA caused by menadione. In contrast to MitoTEMPOL, MitoTEMPOL-H has no superoxide dismutase activity and its antioxidant actions are likely to be mediated by hydrogen atom donation. Therefore, even though MitoTEMPOL is rapidly reduced to MitoTEMPOL-H in cells, it remains an effective antioxidant. Furthermore, as TEMPOL is also reduced to a hydroxylamine in vivo, many of its antioxidant effects may also be mediated by its hydroxylamine.


Journal of Biological Chemistry | 2009

Direct Modification of the Proinflammatory Cytokine Macrophage Migration Inhibitory Factor by Dietary Isothiocyanates

Kristin K. Brown; Frances H. Blaikie; Robin A. J. Smith; Joel D. A. Tyndall; Hongqi Lue; Jürgen Bernhagen; Christine C. Winterbourn; Mark B. Hampton

Isothiocyanates are a class of phytochemicals with widely reported anti-cancer and anti-inflammatory activity. However, knowledge of their activity at a molecular level is limited. The objective of this study was to identify biological targets of phenethyl isothiocyanate (PEITC) using an affinity purification approach. An analogue of PEITC was synthesized to enable conjugation to a solid-phase resin. The pleiotropic cytokine macrophage migration inhibitory factor (MIF) was the major protein captured from cell lysates. Site-directed mutagenesis and mass spectrometry showed that PEITC covalently modified the N-terminal proline residue of MIF. This resulted in complete loss of catalytic tautomerase activity and disruption of protein conformation, as determined by impaired recognition by a monoclonal antibody directed to the region that receptors and interacting proteins bind to MIF. The conformational change was supported by in silico modeling. Monoclonal antibody binding to plasma MIF was disrupted in humans consuming watercress, a major dietary source of PEITC. The isothiocyanates have significant potential for development as MIF inhibitors, and this activity may contribute to the biological properties of these phytochemicals.


Journal of Biological Chemistry | 2003

Superoxide activates uncoupling proteins by generating carbon-centered radicals and initiating lipid peroxidation: studies using a mitochondria-targeted spin trap derived from alpha-phenyl-N-tert-butylnitrone.

Michael P. Murphy; Karim S. Echtay; Frances H. Blaikie; Jordi Asin-Cayuela; Helena M. Cochemé; Katherine Green; Ja Buckingham; Ellen R. Taylor; Fiona Hurrell; Gillian Hughes; S Miwa; Ce Cooper; Da Svistunenko; Raj Smith


Mitochondrion | 2007

Mitochondrial targeting of quinones: Therapeutic implications

Helena M. Cochemé; Geoffrey F. Kelso; Andrew M. James; Meredith F. Ross; Jan Trnka; Thabo Mahendiran; Jordi Asin-Cayuela; Frances H. Blaikie; Abdul-Rahman B. Manas; Carolyn M. Porteous; Victoria J. Adlam; Robin A. J. Smith; Michael P. Murphy

Collaboration


Dive into the Frances H. Blaikie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael P. Murphy

MRC Mitochondrial Biology Unit

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan Trnka

Charles University in Prague

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge