Frances M. Marshall
Idaho National Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frances M. Marshall.
Volume 4: Structural Integrity; Next Generation Systems; Safety and Security; Low Level Waste Management and Decommissioning; Near Term Deployment: Plant Designs, Licensing, Construction, Workforce and Public Acceptance | 2008
Clifford J. Stanley; Frances M. Marshall
This presentation and associated paper provides an overview of the research and irradiation capabilities of the Advanced Test Reactor (ATR) located at the U.S. Department of Energy Idaho National Laboratory (INL). The ATR which has been designated by DOE as a National Scientific User Facility (NSUF) is operated by Battelle Energy Alliance, LLC. This paper will describe the ATR and discuss the research opportunities for university (faculty and students) and industry researchers to use this unique facility for nuclear fuels and materials experiments in support of advanced reactor development and life extension issues for currently operating nuclear reactors. The ATR is a pressurized, light-water moderated and cooled, beryllium-reflected nuclear research reactor with a maximum operating power of 250 MWth . The unique serpentine configuration (Fig. 1) of the fuel elements creates five main reactor power lobes (regions) and nine flux traps. In addition to these nine flux traps there are 68 additional irradiation positions in the reactor core reflector tank. There are also 34 low-flux irradiation positions in the irradiation tanks outside the core reflector tank. The ATR is designed to provide a test environment for the evaluation of the effects of intense radiation (neutron and gamma). Due to the unique serpentine core design each of the five lobes can be operated at different powers and controlled independently. Options exist for the individual test trains and assemblies to be either cooled by the ATR coolant (i.e., exposed to ATR coolant flow rates, pressures, temperatures, and neutron flux) or to be installed in their own independent test loops where such parameters as temperature, pressure, flow rate, neutron flux, and chemistry can be controlled per experimenter specifications. The full-power maximum thermal neutron flux is ∼1.0 x1015 n/cm2 -sec with a maximum fast flux of ∼5.0 x1014 n/cm2 -sec. The Advanced Test Reactor, now a National Scientific User Facility, is a versatile tool in which a variety of nuclear reactor, nuclear physics, reactor fuel, and structural material irradiation experiments can be conducted. The cumulative effects of years of irradiation in a normal power reactor can be duplicated in a few weeks or months in the ATR due to its unique design, power density, and operating flexibility.© 2008 ASME
Archive | 2010
Todd Allen; Mitchell K. Meyer; Frances M. Marshall; Mary Catherine Thelen; Jeff B. Benson
This report describes activities of the ATR NSUF from FY-2008 through FY-2009 and includes information on partner facilities, calls for proposals, users week and education programs. The report also contains project information on university research projects that were awarded by ATR NSUF in the fiscal years 2008 & 2009. This research is university-proposed researcher under a user facility agreement. All intellectual property from these experiments belongs to the university per the user agreement.
Test Research and training Reactors (TRTR) Annual Meeting,Gaithersburg, MD,09/12/2005,09/16/2005 | 2005
Frances M. Marshall
Nuclear Engineering and Technology | 2005
Frances M. Marshall
Archive | 2013
John Jackson; Todd Allen; Frances M. Marshall; James I. Cole
Archive | 2012
Frances M. Marshall; Todd Allen; Jeff B. Benson; James I. Cole; Mary Catherine Thelen
Archive | 2012
Frances M. Marshall; Todd Allen; James I. Cole; Jeff B. Benson; Mary Catherine Thelen
International Conference on Engineering Education ,Belfast, Northern Ireland,08/21/2011,08/26/2011 | 2011
Frances M. Marshall; Jeff B. Benson; Mary Catherine Thelen
Transactions of the american nuclear society | 2010
T. R. Allen; J. B. Benson; M. K. Meyer; Frances M. Marshall; M. C. Thelen
Transactions of the american nuclear society | 2010
Frances M. Marshall