Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frances S. Kittrell is active.

Publication


Featured researches published by Frances S. Kittrell.


Cell | 2003

A Mechanism of Cyclin D1 Action Encoded in the Patterns of Gene Expression in Human Cancer

Justin Lamb; Sridhar Ramaswamy; Heide L. Ford; Bernardo Contreras; Robert V. Martinez; Frances S. Kittrell; Cynthia A. Zahnow; Nick Patterson; Todd R. Golub; Mark E. Ewen

Here we describe how patterns of gene expression in human tumors have been deconvoluted to reveal a mechanism of action for the cyclin D1 oncogene. Computational analysis of the expression patterns of thousands of genes across hundreds of tumor specimens suggested that a transcription factor, C/EBPbeta/Nf-Il6, participates in the consequences of cyclin D1 overexpression. Functional analyses confirmed the involvement of C/EBPbeta in the regulation of genes affected by cyclin D1 and established this protein as an indispensable effector of a potentially important facet of cyclin D1 biology. This work demonstrates that tumor gene expression databases can be used to study the function of a human oncogene in situ.


Cancer Research | 2008

Identification of Tumor-initiating Cells in a p53 Null Mouse Model of Breast Cancer

Mei Zhang; Fariba Behbod; Rachel L. Atkinson; Melissa D. Landis; Frances S. Kittrell; David Edwards; Daniel Medina; Anna Tsimelzon; Susan G. Hilsenbeck; Jeffrey E. Green; Aleksandra M. Michalowska; Jeffrey M. Rosen

Using a syngeneic p53-null mouse mammary gland tumor model that closely mimics human breast cancer, we have identified, by limiting dilution transplantation and in vitro mammosphere assay, a Lin(-)CD29(H)CD24(H) subpopulation of tumor-initiating cells. Upon subsequent transplantation, this subpopulation generated heterogeneous tumors that displayed properties similar to the primary tumor. Analysis of biomarkers suggests the Lin(-)CD29(H)CD24(H) subpopulation may have arisen from a bipotent mammary progenitor. Differentially expressed genes in the Lin(-)CD29(H)CD24(H) mouse mammary gland tumor-initiating cell population include those involved in DNA damage response and repair, as well as genes involved in epigenetic regulation previously shown to be critical for stem cell self-renewal. These studies provide in vitro and in vivo data that support the cancer stem cell (CSC) hypothesis. Furthermore, this p53-null mouse mammary tumor model may allow us to identify new CSC markers and to test the functional importance of these markers.


Oncogene | 1999

Stage-specific changes in SR splicing factors and alternative splicing in mammary tumorigenesis

Elmar Stickeler; Frances S. Kittrell; Daniel Medina; Susan M. Berget

Using a mouse model of mammary gland development and tumorigenesis we examined changes in both alternative splicing and splicing factors in multiple stages of mammary cancer. The emphasis was on the SR family of splicing factors known to influence alternative splicing in a wide variety of genes, and on alternative splicing of the pre-mRNA encoding CD44, for which alternative splicing has been implicated as important in a number of human cancers, including breast cancer. We observed step-wise increases in expression of individual SR proteins and alternative splicing of CD44 mRNA during mammary gland tumorigenesis. Individual preneoplasias differed as to their expression patterns for SR proteins, often expressing only a sub-set of the family. In contrast, tumors demonstrated a complex pattern of SR expression. Little difference was observed between neoplasias and their metastases. Alternative splicing of CD44 also changed through the disease paradigm such that tumors produced RNA containing a mixture of variable exons, whereas preneoplasias exhibited a more restricted exon inclusion pattern. In contrast, other standard splicing factors changed little in either concentration or splicing pattern in the same cells. These data suggest alterations in relative concentrations of specific splicing factors during early preneoplasia that become more pronounced during tumor formation. Given the ability of SR proteins to affect alternative processing decisions, our results suggest that a number of pre-mRNAs may undergo changes in alternative splicing during the early and intermediate stages of mammary cancer.


American Journal of Pathology | 2000

Development of spontaneous mammary tumors in BALB/c p53-heterozygous mice: A model for Li-Fraumeni syndrome

Charlotte Kuperwasser; Gregory D. Hurlbut; Frances S. Kittrell; Ellen S. Dickinson; Rudy Laucirica; Daniel Medina; Stephen P. Naber; D. Joseph Jerry

Breast cancer is the most frequent tumor type among women in the United States and in individuals with Li-Fraumeni syndrome. The p53 tumor suppressor gene is altered in a large proportion of both spontaneous breast malignancies and Li-Fraumeni breast cancers. This suggests that loss of p53 can accelerate breast tumorigenesis, yet p53-deficient mice rarely develop mammary tumors. To evaluate the effect of p53 loss on mammary tumor formation, the p53(null) allele was back-crossed onto the BALB/c genetic background. Median survival was 15.4 weeks for BALB/c-p53(-/-) mice compared to 54 weeks for BALB/c-p53(+/-) mice. Sarcomas and lymphomas were the most frequent tumor types in BALB/c-p53(-/-) mice, whereas 55% of the female BALB/c-p53(+/-) mice developed mammary carcinomas. The mammary tumors were highly aneuploid, frequently lost the remaining wild-type p53 allele, but rarely lost BRCA1. Although mammary tumors were rarely detected in BALB/c-p53(-/-) female mice, when glands from BALB/c-p53(-/-) mice were transplanted into wild-type BALB/c hosts, 75% developed mammary tumors. The high rate of mammary tumor development in the BALB/c background, but not C57Bl/6 or 129/Sv, suggests a genetic predisposition toward mammary tumorigenesis. Therefore, the BALB/c-p53(+/-) mice provide a unique model for the study of breast cancer in Li-Fraumeni syndrome. These results demonstrate the critical role that the p53 tumor suppressor gene plays in preventing tumorigenesis in the mammary gland.


Oncogene | 2000

A mammary-specific model demonstrates the role of the p53 tumor suppressor gene in tumor development

Dj Jerry; Frances S. Kittrell; Charlotte Kuperwasser; Rodolfo Laucirica; Ellen S. Dickinson; Pj Bonilla; Janet S. Butel; Daniel Medina

Although alterations in the p53 tumor suppressor gene are detected frequently in human breast cancers, mammary tumors are observed infrequently in p53null mice. This has led to the suggestion that absence of p53 alone is not sufficient for induction of mammary tumors. However, early death of p53null mice from thymic lymphomas may obscure tumor phenotypes that would develop later. Therefore, p53null mammary epithelium was transplanted into cleared mammary fat pads of wild type p53 BALB/c hosts to allow long-term analysis of mammary tumor phenotypes. Five treatments were compared for their effects on tumor incidence in hosts bearing transplants of p53null and p53wt mammary epithelium. The treatment groups were: (1) untreated; (2) continuous hormone stimulation with pituitary isografts; (3) multiple pregnancies; (4) DMBA alone; and (5) DMBA+pituitary isografts. The tumor incidences in p53null vs p53wt mammary transplants for each treatment group were 62% vs 0%, 100% vs 0%, 68% vs 0%, 60% vs 4% and 91% vs 14%, respectively. The mammary tumors that developed in the p53null mammary epithelium were all adenocarcinomas and were frequently aneuploid. These data demonstrate that the absence of p53 is sufficient to cause development of mammary tumors and that hormonal stimulation enhances the tumorigenicity of p53null mammary epithelium to a greater extent than DMBA exposure alone. This model provides an in situ approach to examine the molecular basis for the role of p53 in the regulation of mammary tumorigenesis.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Overexpression of Separase induces aneuploidy and mammary tumorigenesis

Nenggang Zhang; Gouquing Ge; Rene Meyer; Sumita Sethi; Dipanjan Basu; Subhashree Pradhan; Yi Jue Zhao; Xiao-Nan Li; Wei Wen Cai; Adel K. El-Naggar; Veerabhadran Baladandayuthapani; Frances S. Kittrell; Pulivarthi H. Rao; Daniel Medina; Debananda Pati

Separase is an endopeptidase that separates sister chromatids by cleaving cohesin Rad21 during the metaphase-to-anaphase transition. Conditional expression of Separase in tetracycline-inducible diploid FSK3 mouse mammary epithelial cells with both p53 WT and mutant (Ser-233-234) alleles of unknown physiological significance develops aneuploidy within 5 days of Separase induction in vitro. Overexpression of Separase induces premature separation of chromatids, lagging chromosomes, and anaphase bridges. In an in vivo mouse mammary transplant model, induction of Separase expression in the transplanted FSK3 cells for 3–4 weeks results in the formation of aneuploid tumors in the mammary gland. Xenograft studies combined with histological and cytogenetic analysis reveal that Separase-induced tumors are clonal in their genomic complements and have a mesenchymal phenotype suggestive of an epithelial–mesenchymal transition. Induction of Separase resulted in trisomies for chromosomes 8, 15, and 17; monosomy for chromosome 10; and amplification of the distal region of chromosomes 8 and 11. Separase protein is found to be significantly overexpressed in human breast tumors compared with matched normal tissue. These results collectively suggest that Separase is an oncogene, whose overexpression alone in mammary epithelial cells is sufficient to induce aneuploidy and tumorigenesis in a p53 mutant background.


Breast Cancer Research | 2009

An intraductal human-in-mouse transplantation model mimics the subtypes of ductal carcinoma in situ.

Fariba Behbod; Frances S. Kittrell; Heather L. LaMarca; David Edwards; Sofia Kerbawy; Jessica Heestand; Evelin Young; Purna Mukhopadhyay; Hung-Wen Yeh; D. Craig Allred; Min Hu; Kornelia Polyak; Jeffrey M. Rosen; Daniel Medina

IntroductionHuman models of noninvasive breast tumors are limited, and the existing in vivo models do not mimic inter- and intratumoral heterogeneity. Ductal carcinoma in situ (DCIS) is the most common type (80%) of noninvasive breast lesions. The aim of this study was to develop an in vivo model whereby the natural progression of human DCIS might be reproduced and studied. To accomplish this goal, the intraductal human-in-mouse (HIM) transplantation model was developed. The resulting models, which mimicked some of the diversity of human noninvasive breast cancers in vivo, were used to show whether subtypes of human DCIS might contain distinct subpopulations of tumor-initiating cells.MethodsThe intraductal models were established by injection of human DCIS cell lines (MCF10DCIS.COM and SUM-225), as well as cells derived from a primary human DCIS (FSK-H7), directly into the primary mouse mammary ducts via cleaved nipple. Six to eight weeks after injections, whole-mount, hematoxylin and eosin, and immunofluorescence staining were performed to evaluate the type and extent of growth of the DCIS-like lesions. To identify tumor-initiating cells, putative human breast stem/progenitor subpopulations were sorted from MCF10DCIS.COM and SUM-225 with flow cytometry, and their in vivo growth fractions were compared with the Fishers Exact test.ResultsHuman DCIS cells initially grew within the mammary ducts, followed by progression to invasion in some cases into the stroma. The lesions were histologically almost identical to those of clinical human DCIS. This method was successful for growing DCIS cell lines (MCF10DCIS.COM and SUM-225) as well as a primary human DCIS (FSK-H7). MCF10DCIS.COM represented a basal-like DCIS model, whereas SUM-225 and FSK-H7 cells were models for HER-2+ DCIS. With this approach, we showed that various subtypes of human DCIS appeared to contain distinct subpopulations of tumor-initiating cells.ConclusionsThe intraductal HIM transplantation model provides an invaluable tool that mimics human breast heterogeneity at the noninvasive stages and allows the study of the distinct molecular and cellular mechanisms of breast cancer progression.


Oncogene | 1998

A transgenic mouse model for mammary carcinogenesis

Baolin Li; Kristen L Murphy; Rodolfo Laucirica; Frances S. Kittrell; Daniel Medina; Jeffrey M. Rosen

Missense mutations in the p53 tumor suppressor occur frequently in human breast cancer and influence both the prognosis and response to chemotherapy. Amino acid 175 (equivalent to murine 172) is the second most common site of missense mutations in p53 in human breast cancer. Over 95% of these mutations are arginine-to-histidine (R-H) substitutions resulting in a gain-of-function, and not merely a dominant-negative phenotype. Transgenic mice expressing a p53 172R–H construct targeted to the mammary gland by means of a whey acidic protein (WAP) promoter were characterized as a model system in order to determine the specific effects of this mutation on mammary tumorigenesis. Although transgene expression alone had no apparent effect on normal mammary development, transgenic mice treated with the chemical carcinogen dimethylbenz(a)anthracene developed tumors with much shorter latency than did control littermates and had a greater tumor burden. Tumors arising in transgenic mice did not exhibit either decreased apoptosis or increased cell proliferation relative to tumors arising in nontransgenic littermates, but did display increased genomic instability. Large pleiomorphic nuclei were visible in many tumors from transgenic mice, and DNA flow analysis confirmed the presence of significant aneuploid cell populations. Since these transgenic mice develop very few spontaneous tumors, while accelerating carcinogen-and oncogene-mediated tumorigenesis, this mouse model will, therefore, be useful in the investigation of early events in mammary tumorigenesis. It may also be used as a preclinical model to test newly developed chemotherapeutic strategies.


The FASEB Journal | 2002

Biological and genetic properties of the p53 null preneoplastic mammary epithelium

Daniel Medina; Frances S. Kittrell; Anne Shepard; L. Clifton Stephens; Cheng Jiang; Junxuan Lü; D. Craig Allred; Maureen McCarthy; Robert L. Ullrich

The absence of the tumor suppressor gene p53 confers an increased tumorigenic risk for mammary epithelial cells. In this report, we describe the biological and genetic properties of the p53 null preneoplastic mouse mammary epithelium in a p53 wild‐type environment. Mammary epithelium from p53 null mice was transplanted serially into the cleared mammary fat pads of p53 wild‐type BALB/c female to develop stable outgrowth lines. The outgrowth lines were transplanted for 10 generations. The outgrowths were ductal in morphology and progressed through ductal hyperplasia and ductal carcinoma in situ before invasive cancer. The preneoplastic outgrowth lines were immortal and exhibited activated telomerase activity. They are estrogen and progesterone receptor‐positive, and aneuploid, and had various levels of tumorigenic potential. The biological and genetic properties of these lines are distinct from those found in most hyperplastic alveolar outgrowth lines, the form of mammary preneoplasia occurring in most traditional models of murine mammary tumorigenesis. These results indicate that the preneoplastic cell populations found in this genetically engineered model are similar in biological properties to a subset of precurser lesions found in human breast cancer and provide a unique model to identify secondary events critical for tumorigenicity and invasiveness.


Cancer Research | 2004

From mice to humans: Identification of commonly deregulated genes in mammary cancer via comparative SAGE studies

Yuhui Hu; Hongxia Sun; Jeffrey Drake; Frances S. Kittrell; Martin C. Abba; Li Deng; Sally Gaddis; Aysegul A. Sahin; Keith A. Baggerly; Daniel Medina; C. Marcelo Aldaz

Genetically engineered mouse mammary cancer models have been used over the years as systems to study human breast cancer. However, much controversy exists on the utility of such models as valid equivalents to the human cancer condition. To perform an interspecies gene expression comparative study in breast cancer we used a mouse model that most closely resembles human breast carcinogenesis. This system relies on the transplant of p53 null mouse mammary epithelial cells into the cleared mammary fat pads of syngeneic hosts. Serial analysis of gene expression (SAGE) was used to obtain gene expression profiles of normal and tumor samples from this mouse mammary cancer model (>300,000 mouse mammary-specific tags). The resulting mouse data were compared with 25 of our human breast cancer SAGE libraries (>2.5 million human breast-specific tags). We observed significant similarities in the deregulation of specific genes and gene families when comparing mouse with human breast cancer SAGE data. A total of 72 transcripts were identified as commonly deregulated in both species. We observed a systematic and significant down-regulation in all of the tumors from both species of various cytokines, including CXCL1 (GRO1), LIF, interleukin 6, and CCL2. All of the mouse and most human mammary tumors also displayed decreased expression of genes known to inhibit cell proliferation, including NFKBIA (IKBα), GADD45B, and CDKN1A (p21); transcription-related genes such as CEBP, JUN, JUNB, and ELF1; and apoptosis-related transcripts such as IER3 and GADD34/PPP1R15A. Examples of overexpressed transcripts in tumors from both species include proliferation-related genes such as CCND1, CKS1B, and STMN1 (oncoprotein 18); and genes related to other functions such as SEPW1, SDFR1, DNCI2, and SP110. Importantly, abnormal expression of several of these genes has not been associated previously with breast cancer. The consistency of these observations was validated in independent mouse and human mammary cancer sets. This is the first interspecies comparison of mammary cancer gene expression profiles. The comparative analysis of mouse and human SAGE mammary cancer data validates this p53 null mouse tumor model as a useful system closely resembling human breast cancer development and progression. More importantly, these studies are allowing us to identify relevant biomarkers of potential use in human studies while leading to a better understanding of specific mechanisms of human breast carcinogenesis.

Collaboration


Dive into the Frances S. Kittrell's collaboration.

Top Co-Authors

Avatar

Daniel Medina

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Jeffrey M. Rosen

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Fariba Behbod

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

David Edwards

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Powel H. Brown

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Anne Shepard

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

C. Marcelo Aldaz

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Jamal Hill

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Janet S. Butel

Baylor College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Robert L. Ullrich

Baylor College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge