Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesc Coll is active.

Publication


Featured researches published by Francesc Coll.


Nature Communications | 2014

A robust SNP barcode for typing Mycobacterium tuberculosis complex strains

Francesc Coll; Ruth McNerney; José Afonso Guerra-Assunção; Judith R. Glynn; João Perdigão; Miguel Viveiros; Isabel Portugal; Arnab Pain; Nigel J. Martin; Taane G. Clark

Strain-specific genomic diversity in the Mycobacterium tuberculosis complex (MTBC) is an important factor in pathogenesis that may affect virulence, transmissibility, host response and emergence of drug resistance. Several systems have been proposed to classify MTBC strains into distinct lineages and families. Here, we investigate single-nucleotide polymorphisms (SNPs) as robust (stable) markers of genetic variation for phylogenetic analysis. We identify ~92k SNP across a global collection of 1,601 genomes. The SNP-based phylogeny is consistent with the gold-standard regions of difference (RD) classification system. Of the ~7k strain-specific SNPs identified, 62 markers are proposed to discriminate known circulating strains. This SNP-based barcode is the first to cover all main lineages, and classifies a greater number of sublineages than current alternatives. It may be used to classify clinical isolates to evaluate tools to control the disease, including therapeutics and vaccines whose effectiveness may vary by strain type.


Genome Medicine | 2015

Rapid determination of anti-tuberculosis drug resistance from whole-genome sequences

Francesc Coll; Ruth McNerney; Mark D. Preston; José Afonso Guerra-Assunção; Andrew Warry; Grant A. Hill-Cawthorne; Kim Mallard; Mridul Nair; Anabela Miranda; Adriana Alves; João Perdigão; Miguel Viveiros; Isabel Portugal; Zahra Hasan; Rumina Hasan; Judith R. Glynn; Nigel J. Martin; Arnab Pain; Taane G. Clark

Mycobacterium tuberculosis drug resistance (DR) challenges effective tuberculosis disease control. Current molecular tests examine limited numbers of mutations, and although whole genome sequencing approaches could fully characterise DR, data complexity has restricted their clinical application. A library (1,325 mutations) predictive of DR for 15 anti-tuberculosis drugs was compiled and validated for 11 of them using genomic-phenotypic data from 792 strains. A rapid online ‘TB-Profiler’ tool was developed to report DR and strain-type profiles directly from raw sequences. Using our DR mutation library, in silico diagnostic accuracy was superior to some commercial diagnostics and alternative databases. The library will facilitate sequence-based drug-susceptibility testing.


eLife | 2015

Large-scale whole genome sequencing of M. tuberculosis provides insights into transmission in a high prevalence area

José Afonso Guerra-Assunção; Amelia C. Crampin; Rmgj Houben; Themba Mzembe; Kim Mallard; Francesc Coll; Palwasha Khan; Louis Banda; A Chiwaya; Rpa Pereira; Ruth McNerney; Pem Fine; Julian Parkhill; Taane G. Clark; Judith R. Glynn

To improve understanding of the factors influencing tuberculosis transmission and the role of pathogen variation, we sequenced all available specimens from patients diagnosed over 15 years in a whole district in Malawi. Mycobacterium tuberculosis lineages were assigned and transmission networks constructed, allowing ≤10 single nucleotide polymorphisms (SNPs) difference. We defined disease as due to recent infection if the network-determined source was within 5 years, and assessed transmissibility from forward transmissions resulting in disease. High-quality sequences were available for 1687 disease episodes (72% of all culture-positive episodes): 66% of patients linked to at least one other patient. The between-patient mutation rate was 0.26 SNPs/year (95% CI 0.21–0.31). We showed striking differences by lineage in the proportion of disease due to recent transmission and in transmissibility (highest for lineage-2 and lowest for lineage-1) that were not confounded by immigration, HIV status or drug resistance. Transmissions resulting in disease decreased markedly over time. DOI: http://dx.doi.org/10.7554/eLife.05166.001


Bioinformatics | 2012

SpolPred: rapid and accurate prediction of Mycobacterium tuberculosis spoligotypes from short genomic sequences

Francesc Coll; Kim Mallard; Mark D. Preston; Stephen D. Bentley; Julian Parkhill; Ruth McNerney; Nigel J. Martin; Taane G. Clark

Summary: Spoligotyping is a well-established genotyping technique based on the presence of unique DNA sequences in Mycobacterium tuberculosis (Mtb), the causal agent of tuberculosis disease (TB). Although advances in sequencing technologies are leading to whole-genome bacterial characterization, tens of thousands of isolates have been spoligotyped, giving a global view of Mtb strain diversity. To bridge the gap, we have developed SpolPred, a software to predict the spoligotype from raw sequence reads. Our approach is compared with experimentally and de novo assembly determined strain types in a set of 44 Mtb isolates. In silico and experimental results are identical for almost all isolates (39/44). However, SpolPred detected five experimentally false spoligotypes and was more accurate and faster than the assembling strategy. Application of SpolPred to an additional seven isolates with no laboratory data led to types that clustered with identical experimental types in a phylogenetic analysis using single-nucleotide polymorphisms. Our results demonstrate the usefulness of the tool and its role in revealing experimental limitations. Availability and implementation: SpolPred is written in C and is available from www.pathogenseq.org/spolpred. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics Online.


The Journal of Infectious Diseases | 2015

Recurrence due to Relapse or Reinfection With Mycobacterium tuberculosis: A Whole-Genome Sequencing Approach in a Large, Population-Based Cohort With a High HIV Infection Prevalence and Active Follow-up

José Afonso Guerra-Assunção; Rein M. G. J. Houben; Amelia C. Crampin; Themba Mzembe; Kim Mallard; Francesc Coll; Palwasha Khan; Louis Banda; Arthur Chiwaya; Rui P. A. Pereira; Ruth McNerney; David Harris; Julian Parkhill; Taane G. Clark; Judith R. Glynn

Background. Recurrent tuberculosis is a major health burden and may be due to relapse with the original strain or reinfection with a new strain. Methods. In a population-based study in northern Malawi, patients with tuberculosis diagnosed from 1996 to 2010 were actively followed after the end of treatment. Whole-genome sequencing with approximately 100-fold coverage was performed on all available cultures. Results of IS6110 restriction fragment-length polymorphism analyses were available for cultures performed up to 2008. Results. Based on our data, a difference of ≤10 single-nucleotide polymorphisms (SNPs) was used to define relapse, and a difference of >100 SNPs was used to define reinfection. There was no evidence of mixed infections among those classified as reinfections. Of 1471 patients, 139 had laboratory-confirmed recurrences: 55 had relapse, and 20 had reinfection; for 64 type of recurrence was unclassified. Almost all relapses occurred in the first 2 years. Human immunodeficiency virus infection was associated with reinfection but not relapse. Relapses were associated with isoniazid resistance, treatment before 2007, and lineage-3 strains. We identified several gene variants associated with relapse. Lineage-2 (Beijing) was overrepresented and lineage-1 underrepresented among the reinfecting strains (P = .004). Conclusions. While some of the factors determining recurrence depend on the patient and their treatment, differences in the Mycobacterium tuberculosis genome appear to have a role in both relapse and reinfection.


PLOS ONE | 2015

Whole Genome Sequencing Based Characterization of Extensively Drug- Resistant Mycobacterium tuberculosis Isolates from Pakistan

Asho Ali; Zahra Hasan; Ruth McNerney; Kim Mallard; Grant A. Hill-Cawthorne; Francesc Coll; Mridul Nair; Arnab Pain; Taane G. Clark; Rumina Hasan

Improved molecular diagnostic methods for detection drug resistance in Mycobacterium tuberculosis (MTB) strains are required. Resistance to first- and second- line anti-tuberculous drugs has been associated with single nucleotide polymorphisms (SNPs) in particular genes. However, these SNPs can vary between MTB lineages therefore local data is required to describe different strain populations. We used whole genome sequencing (WGS) to characterize 37 extensively drug-resistant (XDR) MTB isolates from Pakistan and investigated 40 genes associated with drug resistance. Rifampicin resistance was attributable to SNPs in the rpoB hot-spot region. Isoniazid resistance was most commonly associated with the katG codon 315 (92%) mutation followed by inhA S94A (8%) however, one strain did not have SNPs in katG, inhA or oxyR-ahpC. All strains were pyrazimamide resistant but only 43% had pncA SNPs. Ethambutol resistant strains predominantly had embB codon 306 (62%) mutations, but additional SNPs at embB codons 406, 378 and 328 were also present. Fluoroquinolone resistance was associated with gyrA 91–94 codons in 81% of strains; four strains had only gyrB mutations, while others did not have SNPs in either gyrA or gyrB. Streptomycin resistant strains had mutations in ribosomal RNA genes; rpsL codon 43 (42%); rrs 500 region (16%), and gidB (34%) while six strains did not have mutations in any of these genes. Amikacin/kanamycin/capreomycin resistance was associated with SNPs in rrs at nt1401 (78%) and nt1484 (3%), except in seven (19%) strains. We estimate that if only the common hot-spot region targets of current commercial assays were used, the concordance between phenotypic and genotypic testing for these XDR strains would vary between rifampicin (100%), isoniazid (92%), flouroquinolones (81%), aminoglycoside (78%) and ethambutol (62%); while pncA sequencing would provide genotypic resistance in less than half the isolates. This work highlights the importance of expanded targets for drug resistance detection in MTB isolates.


Tuberculosis | 2014

PolyTB: A genomic variation map for Mycobacterium tuberculosis

Francesc Coll; Mark D. Preston; José Afonso Guerra-Assunção; Grant Hill-Cawthorn; David Harris; João Perdigão; Miguel Viveiros; Isabel Portugal; Francis Drobniewski; Sebastien Gagneux; Judith R. Glynn; Arnab Pain; Julian Parkhill; Ruth McNerney; Nigel J. Martin; Taane G. Clark

Summary Tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is the second major cause of death from an infectious disease worldwide. Recent advances in DNA sequencing are leading to the ability to generate whole genome information in clinical isolates of M. tuberculosis complex (MTBC). The identification of informative genetic variants such as phylogenetic markers and those associated with drug resistance or virulence will help barcode Mtb in the context of epidemiological, diagnostic and clinical studies. Mtb genomic datasets are increasingly available as raw sequences, which are potentially difficult and computer intensive to process, and compare across studies. Here we have processed the raw sequence data (>1500 isolates, eight studies) to compile a catalogue of SNPs (n = 74,039, 63% non-synonymous, 51.1% in more than one isolate, i.e. non-private), small indels (n = 4810) and larger structural variants (n = 800). We have developed the PolyTB web-based tool (http://pathogenseq.lshtm.ac.uk/polytb) to visualise the resulting variation and important meta-data (e.g. in silico inferred strain-types, location) within geographical map and phylogenetic views. This resource will allow researchers to identify polymorphisms within candidate genes of interest, as well as examine the genomic diversity and distribution of strains. PolyTB source code is freely available to researchers wishing to develop similar tools for their pathogen of interest.


BMC Medicine | 2016

Mycobacterium tuberculosis whole genome sequencing and protein structure modelling provides insights into anti-tuberculosis drug resistance

Jody Phelan; Francesc Coll; Ruth McNerney; David B. Ascher; Douglas E. V. Pires; Nick Furnham; Nele Coeck; Grant A. Hill-Cawthorne; Mridul Nair; Kim Mallard; Andrew Ramsay; Susana Campino; Martin L. Hibberd; Arnab Pain; Leen Rigouts; Taane G. Clark

BackgroundCombating the spread of drug resistant tuberculosis is a global health priority. Whole genome association studies are being applied to identify genetic determinants of resistance to anti-tuberculosis drugs. Protein structure and interaction modelling are used to understand the functional effects of putative mutations and provide insight into the molecular mechanisms leading to resistance.MethodsTo investigate the potential utility of these approaches, we analysed the genomes of 144 Mycobacterium tuberculosis clinical isolates from The Special Programme for Research and Training in Tropical Diseases (TDR) collection sourced from 20 countries in four continents. A genome-wide approach was applied to 127 isolates to identify polymorphisms associated with minimum inhibitory concentrations for first-line anti-tuberculosis drugs. In addition, the effect of identified candidate mutations on protein stability and interactions was assessed quantitatively with well-established computational methods.ResultsThe analysis revealed that mutations in the genes rpoB (rifampicin), katG (isoniazid), inhA-promoter (isoniazid), rpsL (streptomycin) and embB (ethambutol) were responsible for the majority of resistance observed. A subset of the mutations identified in rpoB and katG were predicted to affect protein stability. Further, a strong direct correlation was observed between the minimum inhibitory concentration values and the distance of the mutated residues in the three-dimensional structures of rpoB and katG to their respective drugs binding sites.ConclusionsUsing the TDR resource, we demonstrate the usefulness of whole genome association and convergent evolution approaches to detect known and potentially novel mutations associated with drug resistance. Further, protein structural modelling could provide a means of predicting the impact of polymorphisms on drug efficacy in the absence of phenotypic data. These approaches could ultimately lead to novel resistance mutations to improve the design of tuberculosis control measures, such as diagnostics, and inform patient management.


PLOS ONE | 2013

Elucidating emergence and transmission of multidrug-resistant tuberculosis in treatment experienced patients by whole genome sequencing

Taane G. Clark; Kim Mallard; Francesc Coll; Mark D. Preston; Samuel A. Assefa; David Harris; Sam Ogwang; Francis Mumbowa; Bruce Kirenga; Denise M. O’Sullivan; Alphonse Okwera; Kathleen D. Eisenach; Moses Joloba; Stephen D. Bentley; Jerrold J. Ellner; Julian Parkhill; Edward C. Jones-López; Ruth McNerney

Background Understanding the emergence and spread of multidrug-resistant tuberculosis (MDR-TB) is crucial for its control. MDR-TB in previously treated patients is generally attributed to the selection of drug resistant mutants during inadequate therapy rather than transmission of a resistant strain. Traditional genotyping methods are not sufficient to distinguish strains in populations with a high burden of tuberculosis and it has previously been difficult to assess the degree of transmission in these settings. We have used whole genome analysis to investigate M. tuberculosis strains isolated from treatment experienced patients with MDR-TB in Uganda over a period of four years. Methods and Findings We used high throughput genome sequencing technology to investigate small polymorphisms and large deletions in 51 Mycobacterium tuberculosis samples from 41 treatment-experienced TB patients attending a TB referral and treatment clinic in Kampala. This was a convenience sample representing 69% of MDR-TB cases identified over the four year period. Low polymorphism was observed in longitudinal samples from individual patients (2-15 SNPs). Clusters of samples with less than 50 SNPs variation were examined. Three clusters comprising a total of 8 patients were found with almost identical genetic profiles, including mutations predictive for resistance to rifampicin and isoniazid, suggesting transmission of MDR-TB. Two patients with previous drug susceptible disease were found to have acquired MDR strains, one of which shared its genotype with an isolate from another patient in the cohort. Conclusions Whole genome sequence analysis identified MDR-TB strains that were shared by more than one patient. The transmission of multidrug-resistant disease in this cohort of retreatment patients emphasises the importance of early detection and need for infection control. Consideration should be given to rapid testing for drug resistance in patients undergoing treatment to monitor the emergence of resistance and permit early intervention to avoid onward transmission.


Scientific Reports | 2015

Genomic expression catalogue of a global collection of BCG vaccine strains show evidence for highly diverged metabolic and cell-wall adaptations

Abdallah M. Abdallah; Grant A. Hill-Cawthorne; Thomas D. Otto; Francesc Coll; José Afonso Guerra-Assunção; Ge Gao; Raeece Naeem; Hifzur Rahman Ansari; Tareq B. Malas; Sabir A. Adroub; Theo Verboom; Roy Ummels; Huoming Zhang; Aswini K. Panigrahi; Ruth McNerney; Roland Brosch; Taane G. Clark; Marcel A. Behr; Wilbert Bitter; Arnab Pain

Although Bacillus Calmette-Guérin (BCG) vaccines against tuberculosis have been available for more than 90 years, their effectiveness has been hindered by variable protective efficacy and a lack of lasting memory responses. One factor contributing to this variability may be the diversity of the BCG strains that are used around the world, in part from genomic changes accumulated during vaccine production and their resulting differences in gene expression. We have compared the genomes and transcriptomes of a global collection of fourteen of the most widely used BCG strains at single base-pair resolution. We have also used quantitative proteomics to identify key differences in expression of proteins across five representative BCG strains of the four tandem duplication (DU) groups. We provide a comprehensive map of single nucleotide polymorphisms (SNPs), copy number variation and insertions and deletions (indels) across fourteen BCG strains. Genome-wide SNP characterization allowed the construction of a new and robust phylogenic genealogy of BCG strains. Transcriptional and proteomic profiling revealed a metabolic remodeling in BCG strains that may be reflected by altered immunogenicity and possibly vaccine efficacy. Together, these integrated-omic data represent the most comprehensive catalogue of genetic variation across a global collection of BCG strains.

Collaboration


Dive into the Francesc Coll's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julian Parkhill

Wellcome Trust Sanger Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mridul Nair

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Isabel Portugal

Instituto Nacional de Saúde Dr. Ricardo Jorge

View shared research outputs
Researchain Logo
Decentralizing Knowledge