Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesca Amati is active.

Publication


Featured researches published by Francesca Amati.


Diabetes | 2011

Skeletal Muscle Triglycerides, Diacylglycerols, and Ceramides in Insulin Resistance: Another Paradox in Endurance-Trained Athletes?

Francesca Amati; John J. Dubé; Elvis Alvarez-Carnero; Martin M. Edreira; Peter J. Chomentowski; Paul M. Coen; Galen E. Switzer; Perry E. Bickel; Maja Stefanovic-Racic; Frederico G.S. Toledo; Bret H. Goodpaster

OBJECTIVE Chronic exercise and obesity both increase intramyocellular triglycerides (IMTGs) despite having opposing effects on insulin sensitivity. We hypothesized that chronically exercise-trained muscle would be characterized by lower skeletal muscle diacylglycerols (DAGs) and ceramides despite higher IMTGs and would account for its higher insulin sensitivity. We also hypothesized that the expression of key skeletal muscle proteins involved in lipid droplet hydrolysis, DAG formation, and fatty-acid partitioning and oxidation would be associated with the lipotoxic phenotype. RESEARCH DESIGN AND METHODS A total of 14 normal-weight, endurance-trained athletes (NWA group) and 7 normal-weight sedentary (NWS group) and 21 obese sedentary (OBS group) volunteers were studied. Insulin sensitivity was assessed by glucose clamps. IMTGs, DAGs, ceramides, and protein expression were measured in muscle biopsies. RESULTS DAG content in the NWA group was approximately twofold higher than in the OBS group and ~50% higher than in the NWS group, corresponding to higher insulin sensitivity. While certain DAG moieties clearly were associated with better insulin sensitivity, other species were not. Ceramide content was higher in insulin-resistant obese muscle. The expression of OXPAT/perilipin-5, adipose triglyceride lipase, and stearoyl-CoA desaturase protein was higher in the NWA group, corresponding to a higher mitochondrial content, proportion of type 1 myocytes, IMTGs, DAGs, and insulin sensitivity. CONCLUSIONS Total myocellular DAGs were markedly higher in highly trained athletes, corresponding with higher insulin sensitivity, and suggest a more complex role for DAGs in insulin action. Our data also provide additional evidence in humans linking ceramides to insulin resistance. Finally, this study provides novel evidence supporting a role for specific skeletal muscle proteins involved in intramyocellular lipids, mitochondrial oxidative capacity, and insulin resistance.


Diabetes | 2010

Insulin Resistance is Associated with Higher Intramyocellular Triglycerides in Type I but not Type II Myocytes Concomitant with Higher Ceramide Content

Paul M. Coen; John J. Dubé; Francesca Amati; Maja Stefanovic-Racic; Robert E. Ferrell; Frederico G.S. Toledo; Bret H. Goodpaster

OBJECTIVE We tested the primary hypotheses that sphingolipid and diacylglycerol (DAG) content is higher within insulin-resistant muscle and that the association between intramyocellular triglycerides (IMTG) and insulin resistance is muscle fiber type specific. RESEARCH DESIGN AND METHODS A nested case-control analysis was conducted in 22 obese (BMI >30 kg/m2) women who were classified as insulin-resistant (IR; n = 12) or insulin-sensitive (IS; n = 10), determined by hyperinsulinemic-euglycemic clamp (>30% greater in IS compared with IR, P < 0.01). Sphingolipid and DAG content was determined by high-performance liquid chromatography–tandem mass spectrometry. Fiber type–specific IMTG content was histologically determined. Gene expression was determined by quantitative PCR. RESULTS Total (555 ± 53 vs. 293 ± 54 pmol/mg protein, P = 0.004), saturated (361 ± 29 vs. 179 ± 34 pmol/mg protein, P = 0.001), and unsaturated (198 ± 29 vs. 114 ± 21 pmol/mg protein, P = 0.034) ceramides were higher in IR compared with IS. DAG concentrations, however, were similar. IMTG content within type I myocytes, but not type II myocytes, was higher in IR compared with IS subjects (P = 0.005). Insulin sensitivity was negatively correlated with IMTG within type I myocytes (R = −0.51, P = 0.026), but not with IMTG within type II myocytes. The proportion of type I myocytes was lower (41 vs. 59%, P < 0.01) in IR subjects. Several genes involved in lipid droplet and fatty acid metabolism were differentially expressed in IR compared with IS subjects. CONCLUSIONS Human skeletal muscle insulin resistance is related to greater IMTG content in type I but not type II myocytes, to greater ceramide content, and to alterations in gene expression associated with lipid metabolism.


Diabetes Care | 2009

Physical Inactivity and Obesity Underlie the Insulin Resistance of Aging

Francesca Amati; John J. Dubé; Paul M. Coen; Maja Stefanovic-Racic; Frederico G.S. Toledo; Bret H. Goodpaster

OBJECTIVE Age-associated insulin resistance may underlie the higher prevalence of type 2 diabetes in older adults. We examined a corollary hypothesis that obesity and level of chronic physical inactivity are the true causes for this ostensible effect of aging on insulin resistance. RESEARCH DESIGN AND METHODS We compared insulin sensitivity in 7 younger endurance-trained athletes, 12 older athletes, 11 younger normal-weight subjects, 10 older normal-weight subjects, 15 younger obese subjects, and 15 older obese subjects using a glucose clamp. The nonathletes were sedentary. RESULTS Insulin sensitivity was not different in younger endurance-trained athletes versus older athletes, in younger normal-weight subjects versus older normal-weight subjects, or in younger obese subjects versus older obese subjects. Regardless of age, athletes were more insulin sensitive than normal-weight sedentary subjects, who in turn were more insulin sensitive than obese subjects. CONCLUSIONS Insulin resistance may not be characteristic of aging but rather associated with obesity and physical inactivity.


Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2013

Skeletal Muscle Mitochondrial Energetics Are Associated With Maximal Aerobic Capacity and Walking Speed in Older Adults

Paul M. Coen; Sharon A. Jubrias; Giovanna Distefano; Francesca Amati; Dawn C. Mackey; Nancy W. Glynn; Todd M. Manini; Stephanie E. Wohlgemuth; Christiaan Leeuwenburgh; Steven R. Cummings; Anne B. Newman; Luigi Ferrucci; Frederico G.S. Toledo; Eric G. Shankland; Kevin E. Conley; Bret H. Goodpaster

BACKGROUND Lower ambulatory performance with aging may be related to a reduced oxidative capacity within skeletal muscle. This study examined the associations between skeletal muscle mitochondrial capacity and efficiency with walking performance in a group of older adults. METHODS Thirty-seven older adults (mean age 78 years; 21 men and 16 women) completed an aerobic capacity (VO2 peak) test and measurement of preferred walking speed over 400 m. Maximal coupled (State 3; St3) mitochondrial respiration was determined by high-resolution respirometry in saponin-permeabilized myofibers obtained from percutanous biopsies of vastus lateralis (n = 22). Maximal phosphorylation capacity (ATPmax) of vastus lateralis was determined in vivo by (31)P magnetic resonance spectroscopy (n = 30). Quadriceps contractile volume was determined by magnetic resonance imaging. Mitochondrial efficiency (max ATP production/max O2 consumption) was characterized using ATPmax per St3 respiration (ATPmax/St3). RESULTS In vitro St3 respiration was significantly correlated with in vivo ATPmax (r (2) = .47, p = .004). Total oxidative capacity of the quadriceps (St3*quadriceps contractile volume) was a determinant of VO2 peak (r (2) = .33, p = .006). ATPmax (r (2) = .158, p = .03) and VO2 peak (r (2) = .475, p < .0001) were correlated with preferred walking speed. Inclusion of both ATPmax/St3 and VO2 peak in a multiple linear regression model improved the prediction of preferred walking speed (r (2) = .647, p < .0001), suggesting that mitochondrial efficiency is an important determinant for preferred walking speed. CONCLUSIONS Lower mitochondrial capacity and efficiency were both associated with slower walking speed within a group of older participants with a wide range of function. In addition to aerobic capacity, lower mitochondrial capacity and efficiency likely play roles in slowing gait speed with age.


Journals of Gerontology Series A-biological Sciences and Medical Sciences | 2009

Moderate Exercise Attenuates the Loss of Skeletal Muscle Mass That Occurs With Intentional Caloric Restriction–Induced Weight Loss in Older, Overweight to Obese Adults

Peter J. Chomentowski; John J. Dubé; Francesca Amati; Maja Stefanovic-Racic; Shanjian Zhu; Frederico G.S. Toledo; Bret H. Goodpaster

BACKGROUND Aging is associated with a loss of muscle mass and increased body fat. The effects of diet-induced weight loss on muscle mass in older adults are not clear. PURPOSE This study examined the effects of diet-induced weight loss, alone and in combination with moderate aerobic exercise, on skeletal muscle mass in older adults. METHODS Twenty-nine overweight to obese (body mass index = 31.8 +/- 3.3 kg/m(2)) older (67.2 +/- 4.2 years) men (n = 13) and women (n = 16) completed a 4-month intervention consisting of diet-induced weight loss alone (WL; n = 11) or with exercise (WL/EX; n = 18). The WL intervention consisted of a low-fat, 500-1,000 kcal/d caloric restriction. The WL/EX intervention included the WL intervention with the addition of aerobic exercise, moderate-intensity walking, three to five times per week for 35-45 minutes per session. Whole-body dual-energy x-ray absorptiometry, thigh computed tomography (CT), and percutaneous muscle biopsy were performed to assess changes in skeletal muscle mass at the whole-body, regional, and cellular level, respectively. RESULTS Mixed analysis of variance demonstrated that both groups had similar decreases in bodyweight (WL, -9.2% +/- 1.0%; WL/EX, -9.1% +/- 1.0%) and whole-body fat mass (WL, -16.5%, WL/EX, -20.7%). However, whole-body fat-free mass decreased significantly (p < .05) in WL (-4.3% +/- 1.2%) but not in WL/EX (-1.1% +/- 1.0%). Thigh muscle cross-sectional area by CT decreased in both groups (WL, -5.2% +/- 1.1%; WL/EX, -3.0% +/- 1.0%) and was not statistically different between groups. Type I muscle fiber area decreased in WL (-19.2% +/- 7.9%, p = .01) but remained unchanged in WL/EX (3.4% +/- 7.5%). Similar patterns were observed in type II fibers (WL, -16.6% +/- 4.0%; WL/EX, -0.2% +/- 6.5%). CONCLUSION Diet-induced weight loss significantly decreased muscle mass in older adults. However, the addition of moderate aerobic exercise to intentional weight loss attenuated the loss of muscle mass.


The Physician and Sportsmedicine | 2011

Chronic exercise preserves lean muscle mass in masters athletes.

Wroblewski Ap; Francesca Amati; Smiley Ma; Bret H. Goodpaster; Wright

Abstract Aging is commonly associated with a loss of muscle mass and strength, resulting in falls, functional decline, and the subjective feeling of weakness. Exercise modulates the morbidities of muscle aging. Most studies, however, have examined muscle-loss changes in sedentary aging adults. This leaves the question of whether the changes that are commonly associated with muscle aging reflect the true physiology of muscle aging or whether they reflect disuse atrophy. This study evaluated whether high levels of chronic exercise prevents the loss of lean muscle mass and strength experienced in sedentary aging adults. A cross-section of 40 high-level recreational athletes (“masters athletes”) who were aged 40 to 81 years and trained 4 to 5 times per week underwent tests of health/activity, body composition, quadriceps peak torque (PT), and magnetic resonance imaging of bilateral quadriceps. Mid-thigh muscle area, quadriceps area (QA), subcutaneous adipose tissue, and intramuscular adipose tissue were quantified in magnetic resonance imaging using medical image processing, analysis, and visualization software. One-way analysis of variance was used to examine age group differences. Relationships were evaluated using Spearman correlations. Mid-thigh muscle area (P = 0.31) and lean mass (P = 0.15) did not increase with age and were significantly related to retention of mid-thigh muscle area (P < 0.0001). This occurred despite an increase in total body fat percentage (P = 0.003) with age. Mid-thigh muscle area (P = 0.12), QA (P = 0.17), and quadriceps PT did not decline with age. Specific strength (strength per QA) did not decline significantly with age (P = 0.06). As muscle area increased, PT increased significantly (P = 0.008). There was not a significant relationship between intramuscular adipose tissue (P = 0.71) or lean mass (P = 0.4) and PT. This study contradicts the common observation that muscle mass and strength decline as a function of aging alone. Instead, these declines may signal the effect of chronic disuse rather than muscle aging. Evaluation of masters athletes removes disuse as a confounding variable in the study of lower-extremity function and loss of lean muscle mass. This maintenance of muscle mass and strength may decrease or eliminate the falls, functional decline, and loss of independence that are commonly seen in aging adults.


Journal of Applied Physiology | 2008

Separate and combined effects of exercise training and weight loss on exercise efficiency and substrate oxidation

Francesca Amati; John J. Dubé; Chris Shay; Bret H. Goodpaster

Perturbations in body weight have been shown to affect energy expenditure and efficiency during physical activity. The separate effects of weight loss and exercise training on exercise efficiency or the proportion of energy derived from fat oxidation during physical activity, however, are not known. The purpose of this study was to determine the separate and combined effects of exercise training and weight loss on metabolic efficiency, economy (EC), and fat oxidation during steady-state moderate submaximal exercise. Sixty-four sedentary older (67 +/- 0.5 yr) overweight to obese (30.7 +/- 0.4 kg/m(2)) volunteers completed 4 mo of either diet-induced weight loss (WL; n = 11), exercise training (EX; n = 36), or the combination of both interventions (WLEX; n = 17). Energy expenditure, gross efficiency (GE), EC, and proportion of energy expended from fat (EF) were determined during a 1-h submaximal (50% of peak aerobic capacity) cycle ergometry exercise before the intervention and at the same absolute work rate after the intervention. We found that EX increased GE by 4.7 +/- 2.2%. EC was similarly increased by 4.2 +/- 2.1% by EX. The addition of concomitant WL to EX (WLEX) resulted in greater increases in GE (9.0 +/- 3.3%) compared with WL alone but not compared with EX alone. These effects remained after adjusting for changes in lean body mass. The proportion of energy derived from fat during the bout of moderate exercise increased with EX and WLEX but not with WL. From these findings, we conclude that exercise training, either alone or in combination with weight loss, increases both exercise efficiency and the utilization of fat during moderate physical activity in previously sedentary, obese older adults. Weight loss alone, however, significantly improves neither efficiency nor utilization of fat during exercise.


Medicine and Science in Sports and Exercise | 2012

Exercise dose and insulin sensitivity: relevance for diabetes prevention.

John J. Dubé; Katelyn F. Allison; Valentin Rousson; Bret H. Goodpaster; Francesca Amati

PURPOSE Exercise improves insulin resistance and is a first line for the prevention and treatment of type 2 diabetes. The extent, however, to which these responses are dose dependent is not known. The purpose of this study was to examine whether exercise dose was associated with improvements in insulin sensitivity after 4 months of exercise training in previously sedentary adults. METHODS Fifty-five healthy volunteers participated in a 16-wk supervised endurance exercise intervention with a pre/postintervention design. Insulin sensitivity was assessed by euglycemic hyperinsulinemic clamp, peak oxygen uptake by a graded exercise test, and body composition by dual-energy x-ray absorptiometry. The exercise intervention consisted of three to five sessions per week with a minimum of three sessions supervised. A ramped exercise prescription protocol was used to achieve 75% of peak HR for 45 min per session. Exercise dose, expressed as average kilocalories expended per week, was computed as the product of exercise intensity, duration and frequency. RESULTS Improved insulin sensitivity was significantly related to exercise dose in a graded dose-response relationship. No evidence of threshold or maximal dose-response effect was observed. Age and gender did not influence this dose-response relationship. Exercise intensity was also significantly related to improvements in insulin sensitivity, whereas frequency was not. CONCLUSIONS This study identifies a graded dose-response relationship between exercise dose and improvements in insulin sensitivity. The implication of this observation is of importance for the adaptation of exercise prescription in clinical situations.


Eating and Weight Disorders-studies on Anorexia Bulimia and Obesity | 2004

Cognitive-behavioral therapy with simultaneous nutritional and physical activity education in obese patients with binge eating disorder.

M. Fossati; Francesca Amati; D. Painot; M. Reiner; C. Haenni; A. Golay

An important problem with obese patients suffering from binge eating disorders (BED) is to treat their dysfunctional eating patterns while initiating a weight loss. We propose to assess a cognitive-behavioral therapy combined with a nutritional and a physical activity program. Our purpose is to verify that the addition of a nutritional and a physical program leads to a significant weight loss and enables psychological improvement. The patients (n=61) participated in a 12 weekly sessions group treatment of either a purely cognitive-behavioral therapy, or a cognitive-behavioral therapy associated to a nutritional approach mainly focused on fat restriction, or to a cognitive-behavioral therapy combined with a nutritional and a physical activity approach. The mean weight loss is significant (p<0.01) after the association of the cognitive-behavioral therapy and the nutritional education, but is even more significant (p<0.001) after the combination of a cognitive-behavioral therapy with a nutritional education and a physical activity program. Depression scores decrease in the three approaches, anxiety (p<0.05) results improve only in the combined nutritional, physical activity and cognitive-behavioral approach. Eating disorders improved significantly in all three approaches even if improvements in subscales seem more important in the combined approach. Finally, exercise seems to be a positive addition to the nutritional cognitive-behavioral therapy since it decreases negative mood, improves eating disorders and leads to an effective body weight loss.


The Journal of Clinical Endocrinology and Metabolism | 2014

Skeletal Muscle Mitochondria in the Elderly: Effects of Physical Fitness and Exercise Training

Nicholas T. Broskey; Chiara Greggio; Andreas Boss; Marie Boutant; Andrew A. Dwyer; Leopold Schlueter; Didier Hans; Gerald Gremion; Roland Kreis; Chris Boesch; Carles Cantó; Francesca Amati

CONTEXT Sarcopenia is thought to be associated with mitochondrial (Mito) loss. It is unclear whether the decrease in Mito content is consequent to aging per se or to decreased physical activity. OBJECTIVES The objective of the study was to examine the influence of fitness on Mito content and function and to assess whether exercise could improve Mito function in older adults. DESIGN AND SUBJECTS Three distinct studies were conducted: 1) a cross-sectional observation comparing Mito content and fitness in a large heterogeneous cohort of older adults; 2) a case-control study comparing chronically endurance-trained older adults and sedentary (S) subjects matched for age and gender; and 3) a 4-month exercise intervention in S. SETTING The study was conducted at a university-based clinical research center. OUTCOMES Mito volume density (MitoVd) was assessed by electron microscopy from vastus lateralis biopsies, electron transport chain proteins by Western blotting, mRNAs for transcription factors involved in M biogenesis by quantitative RT-PCR, and in vivo oxidative capacity (ATPmax) by (31)P-magnetice resonance spectroscopy. Peak oxygen uptake was measured by graded exercise test. RESULTS Peak oxygen uptake was strongly correlated with MitoVd in 80 60- to 80-year-old adults. Comparison of chronically endurance-trained older adults vs S revealed differences in MitoVd, ATPmax, and some electron transport chain protein complexes. Finally, exercise intervention confirmed that S subjects are able to recover MitoVd, ATPmax, and specific transcription factors. CONCLUSIONS These data suggest the following: 1) aging per se is not the primary culprit leading to Mito dysfunction; 2) an aerobic exercise program, even at an older age, can ameliorate the loss in skeletal muscle Mito content and may prevent aging muscle comorbidities; and 3) the improvement of Mito function is all about content.

Collaboration


Dive into the Francesca Amati's collaboration.

Top Co-Authors

Avatar

Bret H. Goodpaster

Translational Research Institute

View shared research outputs
Top Co-Authors

Avatar

John J. Dubé

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Paul M. Coen

Translational Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge