Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesca Blasco is active.

Publication


Featured researches published by Francesca Blasco.


Bioorganic & Medicinal Chemistry Letters | 2013

Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation.

Pascal Furet; Vito Guagnano; Robin Alec Fairhurst; Patricia Imbach-Weese; Ian Bruce; Mark Knapp; Christine Fritsch; Francesca Blasco; Joachim Blanz; Reiner Aichholz; Jacques Hamon; Doriano Fabbro; Giorgio Caravatti

Phosphatidylinositol-3-kinase α (PI3Kα) is a therapeutic target of high interest in anticancer drug research. On the basis of a binding model rationalizing the high selectivity and potency of a particular series of 2-aminothiazole compounds in inhibiting PI3Kα, a medicinal chemistry program has led to the discovery of the clinical candidate NVP-BYL719.


Molecular Cancer Therapeutics | 2010

Potent and Selective Inhibition of Polycythemia by the Quinoxaline JAK2 Inhibitor NVP-BSK805

Fabienne Baffert; Catherine H. Regnier; Alain De Pover; Carole Pissot-Soldermann; Gisele A. Tavares; Francesca Blasco; Josef Brueggen; Patrick Chène; Peter Drueckes; Dirk Erdmann; Pascal Furet; Marc Gerspacher; Marc Lang; David Ledieu; Lynda Nolan; Stephan Ruetz; Joerg Trappe; Eric Vangrevelinghe; Markus Wartmann; Lorenza Wyder; Francesco Hofmann; Thomas Radimerski

The recent discovery of an acquired activating point mutation in JAK2, substituting valine at amino acid position 617 for phenylalanine, has greatly improved our understanding of the molecular mechanism underlying chronic myeloproliferative neoplasms. Strikingly, the JAK2V617F mutation is found in nearly all patients suffering from polycythemia vera and in roughly every second patient suffering from essential thrombocythemia and primary myelofibrosis. Thus, JAK2 represents a promising target for the treatment of myeloproliferative neoplasms and considerable efforts are ongoing to discover and develop inhibitors of the kinase. Here, we report potent inhibition of JAK2V617F and JAK2 wild-type enzymes by a novel substituted quinoxaline, NVP-BSK805, which acts in an ATP-competitive manner. Within the JAK family, NVP-BSK805 displays more than 20-fold selectivity towards JAK2 in vitro, as well as excellent selectivity in broader kinase profiling. The compound blunts constitutive STAT5 phosphorylation in JAK2V617F-bearing cells, with concomitant suppression of cell proliferation and induction of apoptosis. In vivo, NVP-BSK805 exhibited good oral bioavailability and a long half-life. The inhibitor was efficacious in suppressing leukemic cell spreading and splenomegaly in a Ba/F3 JAK2V617F cell-driven mouse mechanistic model. Furthermore, NVP-BSK805 potently suppressed recombinant human erythropoietin-induced polycythemia and extramedullary erythropoiesis in mice and rats. Mol Cancer Ther; 9(7); 1945–55. ©2010 AACR.


Frontiers in Pharmacology | 2014

Implementation of pharmacokinetic and pharmacodynamic strategies in early research phases of drug discovery and development at Novartis Institute of Biomedical Research

Tove Tuntland; Brian T. Ethell; Takatoshi Kosaka; Francesca Blasco; Richard Zang; Monish Jain; Ty Gould; Keith Hoffmaster

Characterizing the relationship between the pharmacokinetics (PK, concentration vs. time) and pharmacodynamics (PD, effect vs. time) is an important tool in the discovery and development of new drugs in the pharmaceutical industry. The purpose of this publication is to serve as a guide for drug discovery scientists toward optimal design and conduct of PK/PD studies in the research phase. This review is a result of the collaborative efforts of DMPK scientists from various Metabolism and Pharmacokinetic (MAP) departments of the global organization Novartis Institute of Biomedical Research (NIBR). We recommend that PK/PD strategies be implemented in early research phases of drug discovery projects to enable successful transition to drug development. Effective PK/PD study design, analysis, and interpretation can help scientists elucidate the relationship between PK and PD, understand the mechanism of drug action, and identify PK properties for further improvement and optimal compound design. Additionally, PK/PD modeling can help increase the translation of in vitro compound potency to the in vivo setting, reduce the number of in vivo animal studies, and improve translation of findings from preclinical species into the clinical setting. This review focuses on three important elements of successful PK/PD studies, namely partnership among key scientists involved in the study execution; parameters that influence study designs; and data analysis and interpretation. Specific examples and case studies are highlighted to help demonstrate key points for consideration. The intent is to provide a broad PK/PD foundation for colleagues in the pharmaceutical industry and serve as a tool to promote appropriate discussions on early research project teams with key scientists involved in PK/PD studies.


Journal of Virology | 2015

Discovery of Dengue Virus NS4B Inhibitors

Qing Yin Wang; Hongping Dong; Bin Zou; Ratna Karuna; Kah Fei Wan; Jing Zou; Agatha Susila; Andy Yip; Chao Shan; Kim Long Yeo; Haoying Xu; Mei Ding; Wai Ling Chan; Feng Gu; Peck Gee Seah; Wei Liu; Suresh B. Lakshminarayana; CongBao Kang; Julien Lescar; Francesca Blasco; Paul W. Smith; Pei Yong Shi

ABSTRACT The four serotypes of dengue virus (DENV-1 to -4) represent the most prevalent mosquito-borne viral pathogens in humans. No clinically approved vaccine or antiviral is currently available for DENV. Here we report a spiropyrazolopyridone compound that potently inhibits DENV both in vitro and in vivo. The inhibitor was identified through screening of a 1.8-million-compound library by using a DENV-2 replicon assay. The compound selectively inhibits DENV-2 and -3 (50% effective concentration [EC50], 10 to 80 nM) but not DENV-1 and -4 (EC50, >20 μM). Resistance analysis showed that a mutation at amino acid 63 of DENV-2 NS4B (a nonenzymatic transmembrane protein and a component of the viral replication complex) could confer resistance to compound inhibition. Genetic studies demonstrate that variations at amino acid 63 of viral NS4B are responsible for the selective inhibition of DENV-2 and -3. Medicinal chemistry improved the physicochemical properties of the initial “hit” (compound 1), leading to compound 14a, which has good in vivo pharmacokinetics. Treatment of DENV-2-infected AG129 mice with compound 14a suppressed viremia, even when the treatment started after viral infection. The results have proven the concept that inhibitors of NS4B could potentially be developed for clinical treatment of DENV infection. Compound 14a represents a potential preclinical candidate for treatment of DENV-2- and -3-infected patients. IMPORTANCE Dengue virus (DENV) threatens up to 2.5 billion people and is now spreading in many regions in the world where it was not previously endemic. While there are several promising vaccine candidates in clinical trials, approved vaccines or antivirals are not yet available. Here we describe the identification and characterization of a spiropyrazolopyridone as a novel inhibitor of DENV by targeting the viral NS4B protein. The compound potently inhibits two of the four serotypes of DENV (DENV-2 and -3) both in vitro and in vivo. Our results validate, for the first time, that NS4B inhibitors could potentially be developed for antiviral therapy for treatment of DENV infection in humans.


Bioorganic & Medicinal Chemistry | 2013

The kinetic deuterium isotope effect as applied to metabolic deactivation of imatinib to the des-methyl metabolite, CGP74588

Paul W. Manley; Francesca Blasco; Reiner Aichholz

There has recently been a burgeoning interest in impeding drug metabolism by replacing hydrogen atoms with deuterium to invoke a kinetic isotope effect. Imatinib, a front-line therapy for both chronic myeloid leukemia and of gastrointestinal stromal tumours, is often substantially metabolised via N-demethylation to the significantly less active CGP74588. Since deuterium-carbon bonds are stronger than hydrogen-carbon bonds, we hypothesised that the N-trideuteromethyl analogue of imatinib might be subject to a reduced metabolic turnover as compared to imatinib and lead to different pharmacokinetic properties, and hence improved efficacy, in vivo. Consequently, we investigated whether the N-trideuteromethyl analogue would maintain target inhibition and show a reduced propensity for N-demethylation in in vitro assays with liver microsomes and following oral administration to rats. The N-trideuteromethyl compound exhibited similar activity as a tyrosine kinase inhibitor as imatinib and similar efficacy as an antiproliferative in cellular assays. In comparison to imatinib, the trideuterated analogue also showed reduced N-demethylation upon incubation with both rat and human liver microsomes, consistent with a deuterium isotope effect. However, the reduced in vitro metabolism did not translate into increased exposure of the N-trideuteromethyl analogue following intravenous administration of the compound to rats and no significant difference was observed for the formation of the N-desmethyl metabolite from either parent drug.


Journal of Virology | 2014

Activation of peripheral blood mononuclear cells by dengue virus infection depotentiates balapiravir

Yen-Liang Chen; Nahdiyah Abdul Ghafar; Ratna Karuna; Yilong Fu; Siew Pheng Lim; Wouter Schul; Feng Gu; Maxime Herve; Fumiaki Yokohama; Gang Wang; Daniela Cerny; Katja Fink; Francesca Blasco; Pei Yong Shi

ABSTRACT In a recent clinical trial, balapiravir, a prodrug of a cytidine analog (R1479), failed to achieve efficacy (reducing viremia after treatment) in dengue patients, although the plasma trough concentration of R1479 remained above the 50% effective concentration (EC50). Here, we report experimental evidence to explain the discrepancy between the in vitro and in vivo results and its implication for drug development. R1479 lost its potency by 125-fold when balapiravir was used to treat primary human peripheral blood mononuclear cells (PBMCs; one of the major cells targeted for viral replication) that were preinfected with dengue virus. The elevated EC50 was greater than the plasma trough concentration of R1479 observed in dengue patients treated with balapiravir and could possibly explain the efficacy failure. Mechanistically, dengue virus infection triggered PBMCs to generate cytokines, which decreased their efficiency of conversion of R1479 to its triphosphate form (the active antiviral ingredient), resulting in decreased antiviral potency. In contrast to the cytidine-based compound R1479, the potency of an adenosine-based inhibitor of dengue virus (NITD008) was much less affected. Taken together, our results demonstrate that viral infection in patients before treatment could significantly affect the conversion of the prodrug to its active form; such an effect should be calculated when estimating the dose efficacious for humans.


Bioorganic & Medicinal Chemistry Letters | 2010

Discovery and SAR of potent, orally available 2,8-diaryl-quinoxalines as a new class of JAK2 inhibitors.

Carole Pissot-Soldermann; Marc Gerspacher; Pascal Furet; Christoph Gaul; Philipp Holzer; Clive Mccarthy; Thomas Radimerski; Catherine H. Regnier; Fabienne Baffert; Peter Drueckes; Gisele Tavares; Eric Vangrevelinghe; Francesca Blasco; Giorgio Ottaviani; Flavio Ossola; Julien Scesa; Janitha Reetz

We have designed and synthesized a novel series of 2,8-diaryl-quinoxalines as Janus kinase 2 inhibitors. Many of the inhibitors show low nanomolar activity against JAK2 and potently suppress proliferation of SET-2 cells in vitro. In addition, compounds from this series have favorable rat pharmacokinetic properties suitable for in vivo efficacy evaluation.


Nature | 2017

A Cryptosporidium PI(4)K inhibitor is a drug candidate for cryptosporidiosis

Ujjini H. Manjunatha; Sumiti Vinayak; Jennifer A. Zambriski; Alex Chao; Tracy Sy; Christian G. Noble; Ghislain M. C. Bonamy; Ravinder Reddy Kondreddi; Bin Zou; Peter Gedeck; Carrie F. Brooks; Gillian T. Herbert; Adam Sateriale; Jayesh Tandel; Susan Noh; Suresh B. Lakshminarayana; Siau H. Lim; Laura B. Goodman; Christophe Bodenreider; Gu Feng; Lijun Zhang; Francesca Blasco; Juergen Wagner; F. Joel Leong; Boris Striepen; Thierry T. Diagana

Diarrhoeal disease is responsible for 8.6% of global child mortality. Recent epidemiological studies found the protozoan parasite Cryptosporidium to be a leading cause of paediatric diarrhoea, with particularly grave impact on infants and immunocompromised individuals. There is neither a vaccine nor an effective treatment. Here we establish a drug discovery process built on scalable phenotypic assays and mouse models that take advantage of transgenic parasites. Screening a library of compounds with anti-parasitic activity, we identify pyrazolopyridines as inhibitors of Cryptosporidium parvum and Cryptosporidium hominis. Oral treatment with the pyrazolopyridine KDU731 results in a potent reduction in intestinal infection of immunocompromised mice. Treatment also leads to rapid resolution of diarrhoea and dehydration in neonatal calves, a clinical model of cryptosporidiosis that closely resembles human infection. Our results suggest that the Cryptosporidium lipid kinase PI(4)K (phosphatidylinositol-4-OH kinase) is a target for pyrazolopyridines and that KDU731 warrants further preclinical evaluation as a drug candidate for the treatment of cryptosporidiosis.


ACS Medicinal Chemistry Letters | 2015

Lead Optimization of Spiropyrazolopyridones: A New and Potent Class of Dengue Virus Inhibitors

Bin Zou; Wai Ling Chan; Mei Ding; Seh Yong Leong; Shahul Nilar; Peck Gee Seah; Wei Liu; Ratna Karuna; Francesca Blasco; Andy Yip; Alex Chao; Agatha Susila; Hongping Dong; Qing Yin Wang; Hao Ying Xu; Katherine Chan; Kah Fei Wan; Feng Gu; Thierry T. Diagana; Trixie Wagner; Ina Dix; Pei Yong Shi; Paul W. Smith

Spiropyrazolopyridone 1 was identified, as a novel dengue virus (DENV) inhibitor, from a DENV serotype 2 (DENV-2) high-throughput phenotypic screen. As a general trend within this chemical class, chiral resolution of the racemate revealed that R enantiomer was significantly more potent than the S. Cell-based lead optimization of the spiropyrazolopyridones focusing on improving the physicochemical properties is described. As a result, an optimal compound 14a, with balanced in vitro potency and pharmacokinetic profile, achieved about 1.9 log viremia reduction at 3 × 50 mg/kg (bid) or 3 × 100 mg/kg (QD) oral doses in the dengue in vivo mouse efficacy model.


Bioorganic & Medicinal Chemistry Letters | 2010

2-Amino-aryl-7-aryl-benzoxazoles as potent, selective and orally available JAK2 inhibitors

Marc Gerspacher; Pascal Furet; Carole Pissot-Soldermann; Christoph Gaul; Philipp Holzer; Eric Vangrevelinghe; Marc Lang; Dirk Erdmann; Thomas Radimerski; Catherine H. Regnier; Patrick Chène; Alain De Pover; Francesco Hofmann; Fabienne Baffert; Thomas Buhl; Reiner Aichholz; Francesca Blasco; Ralf Endres; Jörg Trappe; Peter Drueckes

A series of novel benzoxazole derivatives has been designed and shown to exhibit attractive JAK2 inhibitory profiles in biochemical and cellular assays, capable of delivering compounds with favorable PK properties in rats. Synthesis and structure-activity relationship data are also provided.

Collaboration


Dive into the Francesca Blasco's collaboration.

Researchain Logo
Decentralizing Knowledge