Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesca Borghi is active.

Publication


Featured researches published by Francesca Borghi.


Nanotechnology | 2012

Bottom-up engineering of the surface roughness of nanostructured cubic zirconia to control cell adhesion.

Ajay Vikram Singh; M Ferri; Margherita Tamplenizza; Francesca Borghi; Giorgio Divitini; Caterina Ducati; Cristina Lenardi; Claudio Piazzoni; M. Merlini; Alessandro Podestà; Paolo Milani

Nanostructured cubic zirconia is a strategic material for biomedical applications since it combines superior structural and optical properties with a nanoscale morphology able to control cell adhesion and proliferation. We produced nanostructured cubic zirconia thin films at room temperature by supersonic cluster beam deposition of nanoparticles produced in the gas phase. Precise control of film roughness at the nanoscale is obtained by operating in a ballistic deposition regime. This allows one to study the influence of nanoroughness on cell adhesion, while keeping the surface chemistry constant. We evaluated cell adhesion on nanostructured zirconia with an osteoblast-like cell line using confocal laser scanning microscopy for detailed morphological and cytoskeleton studies. We demonstrated that the organization of cytoskeleton and focal adhesion formation can be controlled by varying the evolution of surface nanoroughness.


PLOS ONE | 2013

Nanoscale Roughness and Morphology Affect the IsoElectric Point of Titania Surfaces

Francesca Borghi; Varun Vyas; Alessandro Podestà; Paolo Milani

We report on the systematic investigation of the role of surface nanoscale roughness and morphology on the charging behaviour of nanostructured titania (TiO2) surfaces in aqueous solutions. IsoElectric Points (IEPs) of surfaces have been characterized by direct measurement of the electrostatic double layer interactions between titania surfaces and the micrometer-sized spherical silica probe of an atomic force microscope in NaCl aqueous electrolyte. The use of a colloidal probe provides well-defined interaction geometry and allows effectively probing the overall effect of nanoscale morphology. By using supersonic cluster beam deposition to fabricate nanostructured titania films, we achieved a quantitative control over the surface morphological parameters. We performed a systematical exploration of the electrical double layer properties in different interaction regimes characterized by different ratios of characteristic nanometric lengths of the system: the surface rms roughness Rq, the correlation length ξ and the Debye length λD. We observed a remarkable reduction by several pH units of IEP on rough nanostructured surfaces, with respect to flat crystalline rutile TiO2. In order to explain the observed behavior of IEP, we consider the roughness-induced self-overlap of the electrical double layers as a potential source of deviation from the trend expected for flat surfaces.


Journal of Physics D | 2014

Patterning of gold-polydimethylsiloxane (Au-PDMS) nanocomposites by supersonic cluster beam implantation

C. Ghisleri; Francesca Borghi; Luca Ravagnan; Alessandro Podestà; Claudio Melis; Luciano Colombo; Paolo Milani

Patterned gold–polydimethylsiloxane (Au–PDMS) nanocomposites were fabricated by supersonic cluster beam implantation (SCBI) of neutral gold nanoparticles in PDMS through stencil masks. The influence of nanoparticle dose on the surface roughness and morphology of the micropatterned regions of the nanocomposite was characterized. Nanoparticle implantation causes the swelling of PDMS without affecting substantially the lateral resolution of the patterns. In order to have an insight on the mechanism and the influence of nanoparticle implantation on the polymeric matrix, large-scale molecular dynamics simulations of the implantation process have been performed. The simulations show that even a single cluster impact on PDMS substrate strongly affects the polymer local temperature and density. Our results show that SCBI is a promising methodology for the efficient fabrication of nanocomposite microstructures on polymers with interesting morphological, structural and functional properties.


Applied Physics Letters | 2015

Stretchable nanocomposite electrodes with tunable mechanical properties by supersonic cluster beam implantation in elastomers

Francesca Borghi; Claudio Melis; C. Ghisleri; Alessandro Podestà; Luca Ravagnan; Luciano Colombo; Paolo Milani

We demonstrate the fabrication of gold-polydimethylsiloxane nanocomposite electrodes, by supersonic cluster beam implantation, with tunable Youngs modulus depending solely on the amount of metal clusters implanted in the elastomeric matrix. We show both experimentally and by atomistic simulations that the mechanical properties of the nanocomposite can be maintained close to that of the bare elastomer for significant metal volume concentrations. Moreover, the elastic properties of the nanocomposite, as experimentally characterized by nanoindentation and modeled with molecular dynamics simulations, are also well described by the Guth-Gold classical model for nanoparticle-filled rubbers, which depends on the presence, concentration, and aspect ratio of metal nanoparticles, and not on the physical and chemical modification of the polymeric matrix due to the embedding process. The elastic properties of the nanocomposite can therefore be determined and engineered a priori, by controlling only the nanoparticle concentration.


Journal of Applied Physics | 2015

Nanomanufacturing of titania interfaces with controlled structural and functional properties by supersonic cluster beam deposition

Alessandro Podestà; Francesca Borghi; Marco Indrieri; Simone Bovio; Claudio Piazzoni; Paolo Milani

Great emphasis is placed on the development of integrated approaches for the synthesis and the characterization of ad hoc nanostructured platforms, to be used as templates with controlled morphology and chemical properties for the investigation of specific phenomena of great relevance in interdisciplinary fields such as biotechnology, medicine, and advanced materials. Here, we discuss the crucial role and the advantages of thin film deposition strategies based on cluster-assembling from supersonic cluster beams. We select cluster-assembled nanostructured titania (ns-TiO2) as a case study to demonstrate that accurate control over morphological parameters can be routinely achieved, and consequently, over several relevant interfacial properties and phenomena, like surface charging in a liquid electrolyte, and proteins and nanoparticles adsorption. In particular, we show that the very good control of nanoscale morphology is obtained by taking advantage of simple scaling laws governing the ballistic deposition regime of low-energy, mass-dispersed clusters with reduced surface mobility.


Journal of Applied Physics | 2016

Cluster-assembled cubic zirconia films with tunable and stable nanoscale morphology against thermal annealing

Francesca Borghi; E. Sogne; Cristina Lenardi; Alessandro Podestà; M. Merlini; Caterina Ducati; Paolo Milani

Nanostructured zirconium dioxide (zirconia) films are very promising for catalysis and biotechnological applications: a precise control of the interfacial properties of the material at different length scales and, in particular, at the nanoscale, is therefore necessary. Here, we present the characterization of cluster-assembled zirconia films produced by supersonic cluster beam deposition possessing cubic structure at room temperature and controlled nanoscale morphology. We characterized the effect of thermal annealing in reducing and oxidizing conditions on the crystalline structure, grain dimensions, and topography. We highlight the mechanisms of film growth and phase transitions, which determine the observed interfacial morphological properties and their resilience against thermal treatments.


Journal of The Mechanical Behavior of Biomedical Materials | 2017

3D porous polyurethanes featured by different mechanical properties: Characterization and interaction with skeletal muscle cells

Lorenzo Vannozzi; Leonardo Ricotti; Tommaso Santaniello; Tercio Terencio; Reinier Oropesa-Nuñez; Claudio Canale; Francesca Borghi; Arianna Menciassi; Cristina Lenardi; Irini Gerges

The fabrication of biomaterials for interaction with muscle cells has attracted significant interest in the last decades. However, 3D porous scaffolds featured by a relatively low stiffness (almost matching the natural muscle one) and highly stable in response to cyclic loadings are not available at present, in this context. This work describes 3D polyurethane-based porous scaffolds featured by different mechanical properties. Biomaterial stiffness was finely tuned by varying the cross-linking degree of the starting foam. Compression tests revealed, for the softest material formulation, stiffness values close to the ones possessed by natural skeletal muscles. The materials were also characterized in terms of local nanoindenting, rheometric properties and long-term stability through cyclic compressions, in a strain range reflecting the contraction extent of natural muscles. Preliminary in vitro tests revealed a preferential adhesion of C2C12 skeletal muscle cells over the softer, rougher and more porous structures. All the material formulations showed low cytotoxicity.


bioRxiv | 2018

Neuronal Cells Confinement by Micropatterned Cluster-Assembled Dots with Mechanotransductive Nanotopography

Carsten Schulte; Jacopo Lamanna; Andrea Moro; Claudio Piazzoni; Francesca Borghi; Matteo Chighizola; Serena Ortoleva; Gabriella Racchetti; Cristina Lenardi; Alessandro Podestà; Antonio Malgaroli; Paolo Milani

The in vitro fabrication of neural networks able to simulate brain circuits and to maintain their native connectivity is of strategic importance to gain a deep understanding of neural circuit physiology and brain natural computational algorithm(s). This would also enable a wide-range of applications including the development of efficient brain-on-chip devices or brain-computer interfaces. Chemical and mechanotransductive cues cooperate to promote proper development and functioning of neural networks. Since the 80’s, controlled growth of mammalian neuronal cells on micrometric patterned chemical cues with the development of synaptic connections and electrical activity has been reported, however the role of mechanotransductive signaling on the growth/organization of neural networks has not been investigated so far. Here we report the fabrication and characterization of patterned substrates for neuronal culture with a controlled structure both at the nano- and microscale suitable for the selective adhesion of neuronal cells. Nanostructured micrometric dots were patterned on passivated cell-repellent glass substrates by supersonic cluster beam deposition of zirconia nanoparticles through stencil masks. Cluster-assembled nanostructured zirconia surfaces are characterized by nanotopographical features that can direct the maturation of neural networks by mechanotransductive signaling. Our approach produces a controlled microscale pattern of adhesive areas with predetermined nanoscale morphology. We have validated these micropatterned substrates using a neuronal cell line (PC12 cells) and cultured hippocampal neurons. While cells have been uniformly plated on the substrates, they adhered only on the nanostructured zirconia regions, remaining effectively confined inside the nanostructured dots on which they were found to grow, move and differentiate.


Scientific Reports | 2018

Cluster-assembled zirconia substrates promote long-term differentiation and functioning of human islets of Langerhans

Alessandra Galli; Elisa Maffioli; Elisa Sogne; S. Moretti; Eliana S. Di Cairano; Armando Negri; Simona Nonnis; Giuseppe Danilo Norata; Fabrizia Bonacina; Francesca Borghi; Alessandro Podestà; Federico Bertuzzi; Paolo Milani; Cristina Lenardi; Gabriella Tedeschi; Carla Perego

Ex vivo expansion and differentiation of human pancreatic β-cell are enabling steps of paramount importance for accelerating the development of therapies for diabetes. The success of regenerative strategies depends on their ability to reproduce the chemical and biophysical properties of the microenvironment in which β-cells develop, proliferate and function. In this paper we focus on the biophysical properties of the extracellular environment and exploit the cluster-assembled zirconia substrates with tailored roughness to mimic the nanotopography of the extracellular matrix. We demonstrate that β-cells can perceive nanoscale features of the substrate and can convert these stimuli into mechanotransductive processes which promote long-term in vitro human islet culture, thus preserving β-cell differentiation and function. Proteomic and quantitative immunofluorescence analyses demonstrate that the process is driven by nanoscale topography, via remodelling of the actin cytoskeleton and nuclear architecture. These modifications activate a transcriptional program which stimulates an adaptive metabolic glucose response. Engineered cluster-assembled substrates coupled with proteomic approaches may provide a useful strategy for identifying novel molecular targets for treating diabetes mellitus and for enhancing tissue engineering in order to improve the efficacy of islet cell transplantation therapies.


Langmuir | 2018

Electrostatic Double-Layer Interaction at the Surface of Rough Cluster-Assembled Films: The Case of Nanostructured Zirconia

Francesca Borghi; Bianca Scaparra; Costanza Paternoster; Paolo Milani; Alessandro Podestà

Here, we investigated the influence of the nanoscale surface morphology on the electrostatic double layer at corrugated surfaces in aqueous electrolytes. For this purpose, we have produced cluster-assembled nanostructured zirconium dioxide (ns-ZrO x, x ≈ 2) films with controlled morphological properties by supersonic cluster beam deposition (SCBD) and measured the double-layer interaction by atomic force microscopy with colloidal probes. SCBD allowed tuning the characteristic widths of the corrugated interface (root-mean-square roughness, correlation length) across a wide range of values, matching the width of the electrostatic double layer (Debye length) and the typical size of nanocolloids (proteins, enzymes, and catalytic nanoparticles). To accurately characterize the surface charge density in the high-roughness regime, we have developed a two-exponential model of the electrostatic force that explicitly includes roughness and better accounts for the roughness-induced amplification of the interaction. We were then able to observe a marked reduction of the isoelectric point of ns-ZrO x surfaces of increasing roughness. This result is in good agreement with our previous observations on cluster-assembled nanostructured titania films and demonstrates that the phenomenon is not limited to a specific material, but more generally depends on peculiar nanoscale morphological effects, related to the competition of the characteristic lengths of the system.

Collaboration


Dive into the Francesca Borghi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge