Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesca Cardinale is active.

Publication


Featured researches published by Francesca Cardinale.


The Plant Cell | 2007

The PP2C-Type Phosphatase AP2C1, Which Negatively Regulates MPK4 and MPK6, Modulates Innate Immunity, Jasmonic Acid, and Ethylene Levels in Arabidopsis

Alois Schweighofer; Vaiva Kazanaviciute; Elisabeth Scheikl; Markus Teige; Robert Doczi; Heribert Hirt; Manfred Schwanninger; Merijn R. Kant; Robert C. Schuurink; Felix Mauch; Antony Buchala; Francesca Cardinale; Irute Meskiene

Wound signaling pathways in plants are mediated by mitogen-activated protein kinases (MAPKs) and stress hormones, such as ethylene and jasmonates. In Arabidopsis thaliana, the transmission of wound signals by MAPKs has been the subject of detailed investigations; however, the involvement of specific phosphatases in wound signaling is not known. Here, we show that AP2C1, an Arabidopsis Ser/Thr phosphatase of type 2C, is a novel stress signal regulator that inactivates the stress-responsive MAPKs MPK4 and MPK6. Mutant ap2c1 plants produce significantly higher amounts of jasmonate upon wounding and are more resistant to phytophagous mites (Tetranychus urticae). Plants with increased AP2C1 levels display lower wound activation of MAPKs, reduced ethylene production, and compromised innate immunity against the necrotrophic pathogen Botrytis cinerea. Our results demonstrate a key role for the AP2C1 phosphatase in regulating stress hormone levels, defense responses, and MAPK activities in Arabidopsis and provide evidence that the activity of AP2C1 might control the plants response to B. cinerea.


The Plant Cell | 2000

SIMKK, a mitogen-activated protein kinase (MAPK) kinase, is a specific activator of the salt stress-induced MAPK, SIMK.

Stefan Kiegerl; Francesca Cardinale; Christine Siligan; Andrea Gross; Emmanuel Baudouin; Aneta Liwosz; Staffan Eklöf; Sandra Till; László Bögre; Heribert Hirt; Irute Meskiene

In eukaryotes, mitogen-activated protein kinases (MAPKs) play key roles in the transmission of external signals, such as mitogens, hormones, and different stresses. MAPKs are activated by MAPK kinases through phosphorylation of MAPKs at both the threonine and tyrosine residues of the conserved TXY activation motif. In plants, several MAPKs are involved in signaling of hormones, stresses, cell cycle, and developmental cues. Recently, we showed that salt stress–induced MAPK (SIMK) is activated when alfalfa cells are exposed to hyperosmotic conditions. Here, we report the isolation and characterization of the alfalfa MAPK kinase SIMKK (SIMK kinase). SIMKK encodes an active protein kinase that interacts specifically with SIMK, but not with three other MAPKs, in the yeast two-hybrid system. Recombinant SIMKK specifically activates SIMK by phosphorylating both the threonine and tyrosine residues in the activation loop of SIMK. SIMKK contains a putative MAPK docking site at the N terminus that is conserved in mammalian MAPK kinases, transcription factors, and phosphatases. Removal of the MAPK docking site of SIMKK partially compromises but does not completely abolish interaction with SIMK, suggesting that other domains of SIMKK also are involved in MAPK binding. In transient expression assays, SIMKK specifically activates SIMK but not two other MAPKs. Moreover, SIMKK enhances the salt-induced activation of SIMK. These data suggest that the salt-induced activation of SIMK is mediated by the dual-specificity protein kinase SIMKK.


Journal of Biological Chemistry | 2000

Differential activation of four specific MAPK pathways by distinct elicitors

Francesca Cardinale; Claudia Jonak; Wilco Ligterink; Karsten Niehaus; Thomas Boller; Heribert Hirt

Plant cells respond to elicitors by inducing a variety of defense responses. Some of these reactions are dependent on the activity of protein kinases. Recently, mitogen-activated protein kinases (MAPKs) have been identified to be activated by fungal and bacterial elicitors as well as by pathogen infection. In gel kinase assays of alfalfa cells treated with yeast cell wall-derived elicitor (YE) revealed that 44- and 46-kDa MAPKs are rapidly and transiently activated. Immunokinase assays with specific MAPK antibodies revealed that YE mainly activated the 46-kDa SIMK and the 44-kDa MMK3 and to a lesser extent the 44-kDa MMK2 and SAMK. When cells were treated with chemically defined elicitors potentially contained in the YE (chitin and N-acetylglucosamine oligomers, β-glucan, and ergosterol), the four MAPKs were found to be activated to different levels and with different kinetics. Whereas SIMK and SAMK have been found to be activated by a number of diverse stimuli, MMK3 is activated during mitosis and was therefore assumed to participate in cell division (22). No physiological process could be associated with MMK2 activity so far. This is the first report that MMK2 and MMK3 can be activated by external stimuli. Overall, our findings indicate that plant cells can sense different cues of a given microorganism through the activation of multiple MAPKs.


Journal of Experimental Botany | 2013

CAROTENOID CLEAVAGE DIOXYGENASE 7 modulates plant growth, reproduction, senescence, and determinate nodulation in the model legume Lotus japonicus

Junwei Liu; Mara Novero; Tatsiana Charnikhova; Alessandra Ferrandino; Andrea Schubert; Carolien Ruyter-Spira; Paola Bonfante; Claudio Lovisolo; Harro J. Bouwmeester; Francesca Cardinale

Strigolactones (SLs) are newly identified hormones that regulate multiple aspects of plant development, infection by parasitic weeds, and mutualistic symbiosis in the roots. In this study, the role of SLs was studied for the first time in the model plant Lotus japonicus using transgenic lines silenced for CAROTENOID CLEAVAGE DIOXYGENASE 7 (LjCCD7), the orthologue of Arabidopsis More Axillary Growth 3. Transgenic LjCCD7-silenced plants displayed reduced height due to shorter internodes, and more branched shoots and roots than the controls, and an increase in total plant biomass, while their root:shoot ratio remained unchanged. Moreover, these lines had longer primary roots, delayed senescence, and reduced flower/pod numbers from the third round of flower and pod setting onwards. Only a mild reduction in determinate nodule numbers and hardly any impact on the colonization by arbuscular mycorrhizal fungi were observed. The results show that the impairment of CCD7 activity in L. japonicus leads to a phenotype linked to SL functions, but with specific features possibly due to the peculiar developmental pattern of this plant species. It is believed that the data also link determinate nodulation, plant reproduction, and senescence to CCD7 function for the first time.


Plant Physiology | 2006

Characterization of a Divinyl Ether Biosynthetic Pathway Specifically Associated with Pathogenesis in Tobacco

Alessandro Fammartino; Francesca Cardinale; Cornelia Göbel; Laurent Mène-Saffrané; Joëlle Fournier; Ivo Feussner; Marie-Thérèse Esquerré-Tugayé

In tobacco (Nicotiana tabacum), an elicitor- and pathogen-induced 9-lipoxygenase (LOX) gene, NtLOX1, is essential for full resistance to pathogens, notably to an incompatible race of Phytophthora parasitica var. nicotianae (Ppn race 0). In this work, we aimed to identify those oxylipins induced during attempted infection by Ppn race 0 and down-regulated in NtLOX1 antisense plants. Here we show that colneleic and colnelenic acids, which significantly inhibit germination of Ppn zoospores, are produced in roots of wild-type plants inoculated with Ppn, but are down-regulated in NtLOX1 antisense plants. A search for a tobacco gene encoding the enzyme involved in the formation of these divinyl ether (DVE) fatty acids resulted in the cloning and characterization of a DVE synthase (DES) clone (NtDES1). NtDES1 is a 9-DES, specifically converting fatty acid 9-hydroperoxides into DVE fatty acids. NtDES1 has the potential to act in combination with NtLOX1 because, in the presence of the two enzymes, linoleic and linolenic acids were converted in vitro into colneleic and colnelenic acids, respectively. In addition, the pattern of NtDES1 gene expression was quite similar to that of NtLOX1. Their transcripts were undetected in healthy tissues from different plant organs, and accumulated locally and transiently after elicitation and fungal infection, but not after wounding. Visualization of NtDES1-yellow fluorescent protein and NtLOX1-cyan fluorescent protein fusion proteins in tobacco leaves indicated that both localize in the cytosol and are excluded from plastids, consistent with the presumed location of the 9-LOX pathway in plants and the lack of transit peptides for NtLOX1 and NtDES1, respectively. Our data suggest that, in tobacco, NtDES1 and NtLOX1 act together and form DVEs in response to pathogen attack and that this class of oxylipins modulates in vivo the outcome of the tobacco-Ppn race 0 interaction.


Planta | 2015

Osmotic stress represses strigolactone biosynthesis in Lotus japonicus roots: exploring the interaction between strigolactones and ABA under abiotic stress

Junwei Liu; Hanzi He; Marco Vitali; Ivan Visentin; Tatsiana Charnikhova; Imran Haider; Andrea Schubert; Carolien Ruyter-Spira; Harro J. Bouwmeester; Claudio Lovisolo; Francesca Cardinale

Main conclusionStrigolactone changes and cross talk with ABA unveil a picture of root-specific hormonal dynamics under stress.AbstractStrigolactones (SLs) are carotenoid-derived hormones influencing diverse aspects of development and communication with (micro)organisms, and proposed as mediators of environmental stimuli in resource allocation processes; to contribute to adaptive adjustments, therefore, their pathway must be responsive to environmental cues. To investigate the relationship between SLs and abiotic stress in Lotus japonicus, we compared wild-type and SL-depleted plants, and studied SL metabolism in roots stressed osmotically and/or phosphate starved. SL-depleted plants showed increased stomatal conductance, both under normal and stress conditions, and impaired resistance to drought associated with slower stomatal closure in response to abscisic acid (ABA). This confirms that SLs contribute to drought resistance in species other than Arabidopsis. However, we also observed that osmotic stress rapidly and strongly decreased SL concentration in tissues and exudates of wild-type Lotus roots, by acting on the transcription of biosynthetic and transporter-encoding genes and independently of phosphate abundance. Pre-treatment with exogenous SLs inhibited the osmotic stress-induced ABA increase in wild-type roots and down-regulated the transcription of the ABA biosynthetic gene LjNCED2. We propose that a transcriptionally regulated, early SL decrease under osmotic stress is needed (but not sufficient) to allow the physiological increase of ABA in roots. This work shows that SL metabolism and effects on ABA are seemingly opposite in roots and shoots under stress.


Eukaryotic Cell | 2012

Transcription of genes in the biosynthetic pathway for fumonisin mycotoxins is epigenetically and differentially regulated in the fungal maize pathogen Fusarium verticillioides.

Ivan Visentin; V. Montis; Katharina Döll; C. Alabouvette; Giacomo Tamietti; Petr Karlovsky; Francesca Cardinale

ABSTRACT When the fungal pathogen Gibberella moniliformis (anamorph, Fusarium verticillioides) colonizes maize and maize-based products, it produces class B fumonisin (FB) mycotoxins, which are a significant threat to human and animal health. FB biosynthetic enzymes and accessory proteins are encoded by a set of clustered and cotranscribed genes collectively named FUM, whose molecular regulation is beginning to be unraveled by researchers. FB accumulation correlates with the amount of transcripts from the key FUM genes, FUM1, FUM21, and FUM8. In fungi in general, gene expression is often partially controlled at the chromatin level in secondary metabolism; when this is the case, the deacetylation and acetylation (and other posttranslational modifications) of histones are usually crucial in the regulation of transcription. To assess whether epigenetic factors regulate the FB pathway, we monitored FB production and FUM1, FUM21, and FUM8 expression in the presence of a histone deacetylase inhibitor and verified by chromatin immunoprecipitation the relative degree of histone acetylation in the promoter regions of FUM1, FUM21, and FUM8 under FB-inducing and noninducing conditions. Moreover, we generated transgenic F. verticillioides strains expressing GFP under the control of the FUM1 promoter to determine whether its strength under FB-inducing and noninducing conditions was influenced by its location in the genome. Our results indicate a clear and differential role for chromatin remodeling in the regulation of FUM genes. This epigenetic regulation can be attained through the modulation of histone acetylation at the level of the promoter regions of the key biosynthetic genes FUM1 and FUM21, but less so for FUM8.


Fungal Biology | 2009

The ITS region as a taxonomic discriminator between Fusarium verticillioides and Fusarium proliferatum

Ivan Visentin; Giacomo Tamietti; Danila Valentino; Ezio Portis; Petr Karlovsky; Antonio Moretti; Francesca Cardinale

The maize pathogens Fusarium verticillioides (Fv) and Fusarium proliferatum (Fp) are morphologically very similar to one another, so Fp isolates have been often mistaken as Fusarium moniliforme (the former name of Fv). The only presently accepted morphological discriminator between these species is the presence/absence of polyphialides. Here, a collection of 100 Fusarium strains, isolated from infected maize kernels on plants grown in north-western Italy, were assigned as Fv or Fp on the basis of the presence/absence of polyphialides. This classification was tested on a subset of isolates by sexual crosses, ITS and calmodulin sequencing and AFLP profiling. An ITS-RFLP assay was extended to the full collection and to a number of Fv and Fp isolates of different geographical origin and hosts. The ITS region is proposed as taxonomically informative for distinguishing between Fp and Fv.


New Phytologist | 2016

Low levels of strigolactones in roots as a component of the systemic signal of drought stress in tomato

Ivan Visentin; Marco Vitali; Manuela Ferrero; Yanxia Zhang; Carolien Ruyter-Spira; Ondřej Novák; Miroslav Strnad; Claudio Lovisolo; Andrea Schubert; Francesca Cardinale

Strigolactones (SL) contribute to drought acclimatization in shoots, because SL-depleted plants are hypersensitive to drought due to stomatal hyposensitivity to abscisic acid (ABA). However, under drought, SL biosynthesis is repressed in roots, suggesting organ specificity in their metabolism and role. Because SL can be transported acropetally, such a drop may also affect shoots, as a systemic indication of stress. We investigated this hypothesis by analysing molecularly and physiologically wild-type (WT) tomato (Solanum lycopersicum) scions grafted onto SL-depleted rootstocks, compared with self-grafted WT and SL-depleted genotypes, during a drought time-course. Shoots receiving few SL from the roots behaved as if under mild stress even if irrigated. Their stomata were hypersensitive to ABA (likely via a localized enhancement of SL synthesis in shoots). Exogenous SL also enhanced stomata sensitivity to ABA. As the partial shift of SL synthesis from roots to shoots mimics what happens under drought, a reduction of root-produced SL might represent a systemic signal unlinked from shootward ABA translocation, and sufficient to prime the plant for better stress avoidance.


Journal of Plant Pathology | 2012

GNOMONIOPSIS CASTANEA sp. nov. (GNOMONIACEAE, DIAPORTHALES) AS THE CAUSAL AGENT OF NUT ROT IN SWEET CHESTNUT

Ivan Visentin; S. Gentile; Danila Valentino; Paolo Gonthier; Giacomo Tamietti; Francesca Cardinale

The genus Gnomoniopsis (Gnomoniaceae, Diaporthales) is currently composed of 13 species which are endophytic and/or parasitic to plants in the families Fagaceae, Onagraceae and Rosaceae. Species definition is based on a combination of morphological traits, association with specific plant hosts, and phylogeny. In this paper a new species, Gnomoniopsis castanea sp. nov., is described based on the association with Castanea sativa (a plant species never reported to be infected by fungi the genus Gnomoniopsis), morphology and phylogenetic analysis of the ITS region of ribosomal DNA and on the EF1-a locus. The fungus is consistently associated with nut rot and caused the disease when artificially inoculated to fruits or flowers. Infection incidence varied depending on the orchard and the year and attained up to 83% of the nuts in some areas of north-western Italy. The fungus was also consistently isolated from the bark of symptomless branches in naturally infected chestnut orchards.

Collaboration


Dive into the Francesca Cardinale's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge