Francesca D. Ciccarelli
King's College London
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francesca D. Ciccarelli.
Science | 2006
Francesca D. Ciccarelli; Tobias Doerks; Christian von Mering; Christopher J. Creevey; Berend Snel; Peer Bork
We have developed an automatable procedure for reconstructing the tree of life with branch lengths comparable across all three domains. The tree has its basis in a concatenation of 31 orthologs occurring in 191 species with sequenced genomes. It revealed interdomain discrepancies in taxonomic classification. Systematic detection and subsequent exclusion of products of horizontal gene transfer increased phylogenetic resolution, allowing us to confirm accepted relationships and resolve disputed and preliminary classifications. For example, we place the phylum Acidobacteria as a sister group of δ-Proteobacteria, support a Gram-positive origin of Bacteria, and suggest a thermophilic last universal common ancestor.
The EMBO Journal | 2003
David Gatfield; Leonie Unterholzner; Francesca D. Ciccarelli; Peer Bork; Elisa Izaurralde
The nonsense‐mediated mRNA decay (NMD) pathway promotes the rapid degradation of mRNAs containing premature stop codons (PTCs). In Caenorhabditis elegans, seven genes (smg1–7) playing an essential role in NMD have been identified. Only SMG2–4 (known as UPF1–3) have orthologs in Saccharomyces cerevisiae. Here we show that the Drosophila orthologs of UPF1–3, SMG1, SMG5 and SMG6 are required for the degradation of PTC‐containing mRNAs, but that there is no SMG7 ortholog in this organism. In contrast, orthologs of SMG5–7 are encoded by the human genome and all three are required for NMD. In human cells, exon boundaries have been shown to play a critical role in defining PTCs. This role is mediated by components of the exon junction complex (EJC). Contrary to expectation, however, we show that the components of the EJC are dispensable for NMD in Drosophila cells. Consistently, PTC definition occurs independently of exon boundaries in Drosophila. Our findings reveal that despite conservation of the NMD machinery, different mechanisms have evolved to discriminate premature from natural stop codons in metazoa.
Cell | 2013
Ruchi Shukla; Kyle R. Upton; Martin Muñoz-Lopez; Daniel J. Gerhardt; Malcolm Fisher; Thu Nguyen; Paul M. Brennan; J. Kenneth Baillie; Agnese Collino; Serena Ghisletti; Shruti Sinha; Fabio Iannelli; Enrico Radaelli; Alexandre Dos Santos; Delphine Rapoud; Catherine Guettier; Didier Samuel; Gioacchino Natoli; Piero Carninci; Francesca D. Ciccarelli; Jose L. Garcia-Perez; Jamila Faivre; Geoffrey J. Faulkner
Summary LINE-1 (L1) retrotransposons are mobile genetic elements comprising ∼17% of the human genome. New L1 insertions can profoundly alter gene function and cause disease, though their significance in cancer remains unclear. Here, we applied enhanced retrotransposon capture sequencing (RC-seq) to 19 hepatocellular carcinoma (HCC) genomes and elucidated two archetypal L1-mediated mechanisms enabling tumorigenesis. In the first example, 4/19 (21.1%) donors presented germline retrotransposition events in the tumor suppressor mutated in colorectal cancers (MCC). MCC expression was ablated in each case, enabling oncogenic β-catenin/Wnt signaling. In the second example, suppression of tumorigenicity 18 (ST18) was activated by a tumor-specific L1 insertion. Experimental assays confirmed that the L1 interrupted a negative feedback loop by blocking ST18 repression of its enhancer. ST18 was also frequently amplified in HCC nodules from Mdr2−/− mice, supporting its assignment as a candidate liver oncogene. These proof-of-principle results substantiate L1-mediated retrotransposition as an important etiological factor in HCC.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Christian von Mering; Evgeny M. Zdobnov; Sophia Tsoka; Francesca D. Ciccarelli; José B. Pereira-Leal; Christos A. Ouzounis; Peer Bork
The analysis of completely sequenced genomes uncovers an astonishing variability between species in terms of gene content and order. During genome history, the genes are frequently rear-ranged, duplicated, lost, or transferred horizontally between genomes. These events appear to be stochastic, yet they are under selective constraints resulting from the functional interactions between genes. These genomic constraints form the basis for a variety of techniques that employ systematic genome comparisons to predict functional associations among genes. The most powerful techniques to date are based on conserved gene neighborhood, gene fusion events, and common phylogenetic distributions of gene families. Here we show that these techniques, if integrated quantitatively and applied to a sufficiently large number of genomes, have reached a resolution which allows the characterization of function at a higher level than that of the individual gene: global modularity becomes detectable in a functional protein network. In Escherichia coli, the predicted modules can be bench-marked by comparison to known metabolic pathways. We found as many as 74% of the known metabolic enzymes clustering together in modules, with an average pathway specificity of at least 84%. The modules extend beyond metabolism, and have led to hundreds of reliable functional predictions both at the protein and pathway level. The results indicate that modularity in protein networks is intrinsically encoded in present-day genomes.
Bioinformatics | 2009
Davide Rambaldi; Francesca D. Ciccarelli
Summary: FancyGene is a fast and user-friendly web-based tool for producing images of one or more genes directly on the corresponding genomic locus. Starting from a variety of input formats, FancyGene rebuilds the basic components of a gene (UTRs, intron, exons). Once the initial representation is obtained, the user can superimpose additional features—such as protein domains and/or a variety of biological markers—in specific positions. FancyGene is extremely flexible allowing the user to change the resulting image dynamically, modifying colors and shapes and adding and/or removing objects. The output images are generated either in portable network graphics (PNG) or portable document format (PDF) formats and can be used for scientific presentations as well as for publications. The PDF format preserves editing capabilities, allowing picture modification using any vector graphics editor. Availability: http://bio.ifom-ieo-campus.it/fancygene Contact: [email protected] Supplementary Information: Details, examples and tutorials can be found at http://bio.ifom-ieo-campus.it/fancygene/tutorial.html and http://bio.ifom-ieo-campus.it/fancygene/help.html
EMBO Reports | 2002
Patrick Aloy; Francesca D. Ciccarelli; Christina Leutwein; Anne-Claude Gavin; Giulio Superti-Furga; Peer Bork; Bettina Böttcher; Robert B. Russell
We present a model of the yeast exosome based on the bacterial degradosome component polynucleotide phosphorylase (PNPase). Electron microscopy shows the exosome to resemble PNPase but with key differences likely related to the position of RNA binding domains, and to the location of domains unique to the exosome. We use various techniques to reduce the many possible models of exosome subunits based on PNPase to just one. The model suggests numerous experiments to probe exosome function, particularly with respect to subunits making direct atomic contacts and conserved, possibly functional residues within the predicted central pore of the complex.
BMC Evolutionary Biology | 2007
Irene Fumasoni; Natalia Meani; Davide Rambaldi; Gaia Scafetta; Myriam Alcalay; Francesca D. Ciccarelli
BackgroundProgressive diversification of paralogs after gene expansion is essential to increase their functional specialization. However, mode and tempo of this divergence remain mostly unclear. Here we report the comparative analysis of PRDM genes, a family of putative transcriptional regulators involved in human tumorigenesis.ResultsOur analysis assessed that the PRDM genes originated in metazoans, expanded in vertebrates and further duplicated in primates. We experimentally showed that fast-evolving paralogs are poorly expressed, and that the most recent duplicates, such as primate-specific PRDM7, acquire tissue-specificity. PRDM7 underwent major structural rearrangements that decreased the number of encoded Zn-Fingers and modified gene splicing. Through internal duplication and activation of a non-canonical splice site (GC-AG), PRDM7 can acquire a novel intron. We also detected an alternative isoform that can retain the intron in the mature transcript and that is predominantly expressed in human melanocytes.ConclusionOur findings show that (a) molecular evolution of paralogs correlates with their expression pattern; (b) gene diversification is obtained through massive genomic rearrangements; and (c) splicing modification contributes to the functional specialization of novel genes.
Molecular and Cellular Biology | 2004
Daniel Forler; Gwénaël Rabut; Francesca D. Ciccarelli; Andrea Herold; Thomas Köcher; Ricarda Niggeweg; Peer Bork; Jan Ellenberg; Elisa Izaurralde
ABSTRACT Metazoan NXF1-p15 heterodimers promote the nuclear export of bulk mRNA across nuclear pore complexes (NPCs). In vitro, NXF1-p15 forms a stable complex with the nucleoporin RanBP2/Nup358, a component of the cytoplasmic filaments of the NPC, suggesting a role for this nucleoporin in mRNA export. We show that depletion of RanBP2 from Drosophila cells inhibits proliferation and mRNA export. Concomitantly, the localization of NXF1 at the NPC is strongly reduced and a significant fraction of this normally nuclear protein is detected in the cytoplasm. Under the same conditions, the steady-state subcellular localization of other nuclear or cytoplasmic proteins and CRM1-mediated protein export are not detectably affected, indicating that the release of NXF1 into the cytoplasm and the inhibition of mRNA export are not due to a general defect in NPC function. The specific role of RanBP2 in the recruitment of NXF1 to the NPC is highlighted by the observation that depletion of CAN/Nup214 also inhibits cell proliferation and mRNA export but does not affect NXF1 localization. Our results indicate that RanBP2 provides a major binding site for NXF1 at the cytoplasmic filaments of the NPC, thereby restricting its diffusion in the cytoplasm after NPC translocation. In RanBP2-depleted cells, NXF1 diffuses freely through the cytoplasm. Consequently, the nuclear levels of the protein decrease and export of bulk mRNA is impaired.
Trends in Genetics | 2008
Davide Rambaldi; Federico M. Giorgi; Fabrizio Capuani; Andrea Ciliberto; Francesca D. Ciccarelli
We identified genomic and network properties of approximately 600 genes mutated in different cancer types. These genes tend not to duplicate but, unlike most human singletons, they encode central hubs of highly interconnected modules within the protein-protein interaction network (PIN). We find that cancer genes are fragile components of the human gene repertoire, sensitive to dosage modification. Furthermore, other nodes of the human PIN with similar properties are rare and probably enriched in candidate cancer genes.
Structure | 2010
Filiz Çivril; Annemarie Wehenkel; Federico M. Giorgi; Stefano Santaguida; Andrea Di Fonzo; Gabriela Grigorean; Francesca D. Ciccarelli; Andrea Musacchio
The RZZ complex recruits dynein to kinetochores. We investigated structure, topology, and interactions of the RZZ subunits (ROD, ZWILCH, and ZW10) in vitro, in vivo, and in silico. We identify neuroblastoma-amplified gene (NAG), a ZW10 binder, as a ROD homolog. ROD and NAG contain an N-terminal beta propeller followed by an alpha solenoid, which is the architecture of certain nucleoporins and vesicle coat subunits, suggesting a distant evolutionary relationship. ZW10 binding to ROD and NAG is mutually exclusive. The resulting ZW10 complexes (RZZ and NRZ) respectively contain ZWILCH and RINT1 as additional subunits. The X-ray structure of ZWILCH, the first for an RZZ subunit, reveals a novel fold distinct from RINT1s. The evolutionarily conserved NRZ likely acts as a tethering complex for retrograde trafficking of COPI vesicles from the Golgi to the endoplasmic reticulum. The RZZ, limited to metazoans, probably evolved from the NRZ, exploiting the dynein-binding capacity of ZW10 to direct dynein to kinetochores.