Francesca Di Modugno
Sapienza University of Rome
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francesca Di Modugno.
International Journal of Cancer | 2004
Francesca Di Modugno; Giovanna Bronzi; Matthew J. Scanlan; Duilia Del Bello; Simona Cascioli; Irene Venturo; Claudio Botti; Maria Rita Nicotra; Marcella Mottolese; Pier Giorgio Natali; Angela Santoni; Elke Jäger; Paola Nisticò
Screening of a cDNA expression library from a primary breast tumor with the autologous patient serum led to the isolation of 6 cDNA clones corresponding to 3 different genes, including a novel gene that maps to chromosome 1 and encodes the human homologue of mouse Mena (hMena, cDNA clone RMNY‐BR‐55), a protein of the Ena/VASP family involved in the regulation of cell motility and adhesion. A cancer‐restricted antibody response against hMena was demonstrated, since 18/93 cancer patient sera, the majority (10/52) from breast cancer, showed anti‐hMena‐specific IgG, while no antibodies were present in healthy donors. When hMena protein expression was analyzed by Western blot and immunohistochemistry, the antigen was overexpressed in the majority of breast cancer cell lines and in 75% of primary breast tumor lesions evaluated. Furthermore, when HLA‐A2‐restricted peptides from the hMena sequence were used to stimulate CD8+ T cells, an hMena‐specific response was found in 9 out of 12 HLA‐A2+ breast cancer patients. In 4 patients, this cell‐mediated immune response was concomitant with antibody response to hMena. Furthermore, an hMena‐specific T‐cell line was established from an HLA‐A2+ breast cancer patient whose primary tumor lesion overexpressed the hMena protein. The present findings highlight the emerging role that overexpression of cytoskeleton regulatory components may have in the induction of a specific antitumor immune response.
Cancer Research | 2007
Francesca Di Modugno; Lucia DeMonte; Michele Balsamo; Giovanna Bronzi; M. Nicotra; Massimo Alessio; Elke Jäger; John Condeelis; Angela Santoni; Pier Giorgio Natali; Paola Nisticò
hMena (ENAH), an actin regulatory protein involved in the control of cell motility and adhesion, is modulated during human breast carcinogenesis. In fact, whereas undetectable in normal mammary epithelium, hMena becomes overexpressed in high-risk benign lesions and primary and metastatic tumors. In vivo, hMena overexpression correlates with the HER-2(+)/ER(-)/Ki67(+) unfavorable prognostic phenotype. In vitro, neuregulin-1 up-regulates whereas Herceptin treatment down-modulates hMena expression, suggesting that it may couple tyrosine kinase receptor signaling to the actin cytoskeleton. Herein, we report the cloning of hMena and of a splice variant, hMena(+11a), which contains an additional exon corresponding to 21 amino acids located in the EVH2 domain, from a breast carcinoma cell line of epithelial phenotype. Whereas hMena overexpression consistently characterizes the transformed phenotype of tumor cells of different lineages, hMena(+11a) isoform is concomitantly present only in epithelial tumor cell lines. In breast cancer cell lines, epidermal growth factor (EGF) treatment promotes concomitant up-regulation of hMena and hMena(+11a), resulting in an increase of the fraction of phosphorylated hMena(+11a) isoform only. hMena(+11a) overexpression and phosphorylation leads to increased p42/44 mitogen-activated protein kinase (MAPK) activation and cell proliferation as evidenced in hMena(+11a)-transfected breast cancer cell lines. On the contrary, hMena knockdown induces reduction of p42/44 MAPK phosphorylation and of the proliferative response to EGF. The present data provide new insight into the relevance of actin cytoskeleton regulatory proteins and, in particular, of hMena isoforms in coupling multiple signaling pathways involved in breast cancer.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Francesca Di Modugno; Pierluigi Iapicca; Aaron Boudreau; Marcella Mottolese; Irene Terrenato; Letizia Perracchio; Russ P. Carstens; Angela Santoni; Mina J. Bissell; Paola Nisticò
Human mena (hMENA), a member of the actin cytoskeleton regulators Ena/VASP, is overexpressed in high-risk preneoplastic lesions and in primary breast tumors and has been identified as playing a role in invasiveness and poor prognosis in breast cancers that express HER2. Here we identify a unique isoform, hMENAΔv6, derived from the hMENA alternative splicing program. In an isogenic model of human breast cancer progression, we show that hMENA11a is expressed in premalignant cells, whereas hMENAΔv6 expression is restricted to invasive cancer cells. “Reversion” of the malignant phenotype leads to concurrent down-regulation of all hMENA isoforms. In breast cancer cell lines, isoform-specific hMENA overexpression or knockdown revealed that in the absence of hMENA11a, overexpression of hMENAΔv6 increased cell invasion, whereas overexpression of hMENA11a reduced the migratory and invasive ability of these cells. hMENA11a splicing was shown to be dependent on the epithelial regulator of splicing 1 (ESRP1), and forced expression of ESRP1 in invasive mesenchymal breast cancer cells caused a phenotypic switch reminiscent of a mesenchymal-to-epithelial transition (MET) characterized by changes in the cytoskeletal architecture, reexpression of hMENA11a, and a reduction in cell invasion. hMENA-positive primary breast tumors, which are hMENA11a-negative, are more frequently E-cadherin low in comparison with tumors expressing hMENA11a. These data suggest that polarized and growth-arrested cellular architecture correlates with absence of alternative hMENA isoform expression, and that the hMENA splicing program is relevant to malignant progression in invasive disease.
Clinical Cancer Research | 2008
Maria Simona Pino; Michele Balsamo; Francesca Di Modugno; Marcella Mottolese; Massimo Alessio; Elisa Melucci; Michele Milella; David J. McConkey; Ulrike Philippar; Frank B. Gertler; Pier Giorgio Natali; Paola Nisticò
Purpose: hMena, member of the enabled/vasodilator-stimulated phosphoprotein family, is a cytoskeletal protein that is involved in the regulation of cell motility and adhesion. The aim of this study was to determine whether or not the expression of hMena isoforms correlated with sensitivity to EGFR tyrosine kinase inhibitors and could serve as markers with potential clinical use. Experimental Design: Human pancreatic ductal adenocarcinoma cell lines were characterized for in vitro sensitivity to erlotinib, expression of HER family receptors, markers of epithelial to mesenchymal transition, and expression of hMena and its isoform hMena+11a. The effects of epidermal growth factor (EGF) and erlotinib on hMena expression as well as the effect of hMena knockdown on cell proliferation were also evaluated. Results: hMena was detected in all of the pancreatic tumor cell lines tested as well as in the majority of the human tumor samples [primary (92%) and metastatic (86%)]. Intriguingly, in vitro hMena+11a isoform was specifically associated with an epithelial phenotype, EGFR dependency, and sensitivity to erlotinib. In epithelial BxPC3 cells, epidermal growth factor up-regulated hMena/hMena+11a and erlotinib down-regulated expression. hMena knockdown reduced cell proliferation and mitogen-activated protein kinase and AKT activation in BxPC3 cells, and promoted the growth inhibitory effects of erlotinib. Conclusions: Collectively, our data indicate that the hMena+11a isoform is associated with an epithelial phenotype and identifies EGFR-dependent cell lines that are sensitive to the EGFR inhibitor erlotinib. The availability of anti-hMena+11a–specific probes may offer a new tool in pancreatic cancer management if these results can be verified prospectively in cancer patients.
Clinical Cancer Research | 2006
Francesca Di Modugno; Marcella Mottolese; Anna Di Benedetto; Andrea Conidi; Flavia Novelli; Letizia Perracchio; Irene Venturo; Claudio Botti; Elke Jäger; Angela Santoni; Pier Giorgio Natali; Paola Nisticò
Purpose: hMena (ENAH), a cytoskeleton regulatory protein involved in the regulation of cell motility and adhesion, is overexpressed in breast cancer. The aim of this study was to define at what stage of breast carcinogenesis hMena is overexpressed and to correlate hMena overexpression with established prognostic factors in breast cancer, focusing on human epidermal growth factor receptor-2 (HER-2). Experimental Design: hMena expression was assessed immunohistochemically in a prospective cohort of cases (n = 360) encompassing a highly representative spectrum of benign breast diseases associated with different risk of transformation, in situ, invasive, and metastatic tumors. Correlations with conventional pathologic and prognostic variables, such as proliferation index, hormonal receptor status, and HER-2 overexpression, were also evaluated. In vitro experiments were done to study the effect of neuregulin-1 and Herceptin treatments on hMena expression. Results: hMena protein is undetectable in normal breast and is weakly expressed in a small percentage of low-risk benign diseases (9%), but displays a progressive and significant increase of positivity in benign lesions at higher risk of transformation (slightly increased risk 43%; moderate increased risk 67%), in in situ (72%), invasive (93%), and metastatic breast cancer (91%). A significant direct correlation with tumor size (P = 0.04), proliferation index (P < 0.0001), and HER-2 overexpression (P < 0.0001) and an inverse relationship with estrogen (P = 0.036) and progesterone receptors (P = 0.001) are found in invasive carcinomas. In vitro experiments show that neuregulin-1 up-regulates, whereas Herceptin down-regulates, hMena expression. Conclusions: Our data provide new insights into the relevance of actin-binding proteins in human breast carcinogenesis and indicate hMena overexpression as a surrogate indicator in breast disease management.
Breast Cancer Research | 2014
Paola Nisticò; Francesca Di Modugno; Sheila Spada; Mina J. Bissell
Following a highly dynamic and complex dialogue between the epithelium and the surrounding microenvironment, the mammary gland develops into a branching structure during puberty, buds during pregnancy, forms intricate polar acini during lactation and, once the babies are weaned, remodels and involutes. At every stage of menstrual and pregnancy cycles, interactions between the cells and the extracellular matrix (ECM) and homotypic and heterotypic cell–cell interactions give rise to the architecture and function of the gland at that junction. These orchestrated programs would not be possible without the important role of the ECM receptors, integrins being the prime examples. The ECM–integrin axis regulates many crucial cellular functions including survival, migration and quiescence; the imbalance in any of these processes could contribute to oncogenesis. In this review we spotlight the involvement of two prominent integrin subunits, β1 and β4 integrins, in cross-talk with tyrosine kinase receptors, and we discuss the roles of these integrin subunits in the biology of normal breast differentiation and as potential prognostic and therapeutic targets in breast cancer.
PLOS ONE | 2010
Francesca Di Modugno; Marcella Mottolese; Lucia DeMonte; Paola Trono; Michele Balsamo; Andrea Conidi; Elisa Melucci; Irene Terrenato; Francesca Belleudi; Maria Rosaria Torrisi; Massimo Alessio; Angela Santoni; Paola Nisticò
hMena and the epithelial specific isoform hMena11a are actin cytoskeleton regulatory proteins belonging to the Ena/VASP family. EGF treatment of breast cancer cell lines upregulates hMena/hMena11a expression and phosphorylates hMena11a, suggesting cross-talk between the ErbB receptor family and hMena/hMena11a in breast cancer. The aim of this study was to determine whether the hMena/hMena11a overexpression cooperates with HER-2 signalling, thereby affecting the HER2 mitogenic activity in breast cancer. In a cohort of breast cancer tissue samples a significant correlation among hMena, HER2 overexpression, the proliferation index (high Ki67), and phosphorylated MAPK and AKT was found and among the molecular subtypes the highest frequency of hMena overexpressing tumors was found in the HER2 subtype. From a clinical viewpoint, concomitant overexpression of HER2 and hMena identifies a subgroup of breast cancer patients showing the worst prognosis, indicating that hMena overexpression adds prognostic information to HER2 overexpressing tumors. To identify a functional link between HER2 and hMena, we show here that HER2 transfection in MCF7 cells increased hMena/hMena11a expression and hMena11a phosphorylation. On the other hand, hMena/hMena11a knock-down reduced HER3, AKT and p44/42 MAPK phosphorylation and inhibited the EGF and NRG1-dependent HER2 phosphorylation and cell proliferation. Of functional significance, hMena/hMena11a knock-down reduced the mitogenic activity of EGF and NRG1. Collectively these data provide new insights into the relevance of hMena and hMena11a as downstream effectors of the ErbB receptor family which may represent a novel prognostic indicator in breast cancer progression, helping to stratify patients.
Current Drug Targets | 2012
Vanja Vaccaro; Alain Gelibter; Emilio Bria; Pierluigi Iapicca; Paola Cappello; Francesca Di Modugno; Maria Simona Pino; Carmen Nuzzo; Francesco Cognetti; Francesco Novelli; Paola Nisticò; Michele Milella
Pancreatic cancer remains a formidable challenge for oncologists and patients alike. Despite intensive efforts, attempts at improving survival in the past 15 years, particularly in advanced disease, have failed. This is true even with the introduction of molecularly targeted agents, chosen on the basis of their action on pathways that were supposedly important in pancreatic cancer development and progression: indeed, with the notable exception of the epidermal growth factor receptor (EGFR) inhibitor erlotinib, that has provided a minimal survival improvement when added to gemcitabine, other agents targeting EGFR, matrix metallo-proteases, farnesyl transferase, or vascular endothelial growth factor have not succeeded in improving outcomes over standard gemcitabine monotherapy for a variety of different reasons. However, recent developments in the molecular epidemiology of pancreatic cancer and an ever evolving understanding of the molecular mechanisms underlying pancreatic cancer initiation and progression raise renewed hope to find novel, relevant therapeutic targets that could be pursued in the clinical setting. In this review we focus on molecular epidemiology of pancreatic cancer, epithelial-to-mesenchymal transition and its influence on sensitivity to EGFR-targeted approaches, apoptotic pathways, hypoxia-related pathways, developmental pathways (such as the hedgehog and Notch pathways), and proteomic analysis as keys to a better understanding of pancreatic cancer biology and, most importantly, as a source of novel molecular targets to be exploited therapeutically.
Journal of Immunotherapy | 1997
Francesca Di Modugno; Caterina Mammi; Laura Rosanò; Oriana Rubiu; Paola Nisticò; Alberto Chersi
Summary Small peptides, 8–10 aminoacids long, derived from degradation of cytoplasmic proteins by a proteasome–proteinase complex, are usually presented and recognized by CD8+ cytolytic T lymphocytes (CTLs) associated with major histocompatibility complex (MHC) class I molecules. Recently synthetic peptides were used for the in vitro induction of tumor-specific CTLs, offering another strategy in the study of the immune-response repertoire and providing a new tool in cancer vaccination and immunotherapy. Peptides derived from otherwise normal proteins, overexpressed in many tumors as products of the protooncogene, may represent a target for an immune response. This is the case of HER-2/neu gene (also known as ErbB-2), encoding a cysteine-rich glycoprotein transmembrane receptor with tyrosine kinase activity (gp185neu). Recent data, demonstrating that HLA-A2.1–related peptides are able to stimulate in vitro CD8+ lymphocytes, prompted us to study the binding to HLA-A2.1 molecules of several gp185 synthetic peptides containing a cystein residue and to define the relevance of this amino acid residue in the reduced or oxidated form of the sulfhydryl group. We found that monomers and their homodimers, linked by a disulfide bridge, bind to HLA-A2.1 molecules with overlapping affinity. These results suggest that additional amino acids of the nonapeptide do not prevent the binding and the HLA refolding through chemical or sterical interactions. This might be of particular relevance for the in vivo processing of cysteine-rich proteins. Because ErbB-2 molecules, as tumor-differentiation antigens in melanoma, are cysteine-rich molecules, it may be relevant to evaluate the possible role of the cystine residues interacting with the T-cell receptor. The recognition of these heterodimers by CD8+ lymphocytes will require functional in vivo studies.
Biochimica et Biophysica Acta | 1997
Alberto Chersi; Francesca Di Modugno; Laura Rosanò
A new method is described for producing fluorescently-tagged peptides containing specific internal derivatives of lysyl residues. The technique employs the base-labile Boc-Lys(Fmoc)-COOH derivative with base-catalyzed removal of the Fmoc protecting group during peptide synthesis and subsequent fluorescent derivatization of the deprotected epsilon-amino group of lysine. By this technique, other lysine residues and the alpha-amino group of the fragment remain unmodified, which could have some value in studies where it might be required to tag a single individual lysine residue within the peptide, but not the amino terminus. In spite of the fact that poly-substituted peptides are badly soluble and might seldom find a practical application, this technique also allows the introduction of different fluorochromes at different lysyl residues within the peptide, thus obtaining double fluorescence. The method, fast and easy, requires a limited number of manual operations during the automatic synthesis of peptides. Although peptide synthesizers provided with an oscillating glass reactor are more suitable for the manual interventions described, this technique might be also adapted to the newer instruments utilizing continuous-flow columns.