Francesca Dini
University of Rome Tor Vergata
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francesca Dini.
Angewandte Chemie | 2012
Daniele Cauzzi; Roberto Pattacini; Massimiliano Delferro; Francesca Dini; Corrado Di Natale; Roberto Paolesse; Sara Bonacchi; Marco Montalti; Nelsi Zaccheroni; Matteo Calvaresi; Francesco Zerbetto; Luca Prodi
The accurate measurement of temperature is of increasing importance as it is required for widespread applications (electronic devices, biology, medical diagnostics). In this context, fluorescence thermometry has already shown great potential, and a variety of molecules have been proposed as luminescent molecular thermometers. Herein, we describe Cu5 metal cluster 1 (Figure 1) that presents remarkable photophysical properties, both in solution and as the solid, characterized by temperature-dependent emission intensity and lifetime that change significantly in the range between 45 and + 80 8C. These properties allow for an unprecedented accuracy in temperature determination by fluorescence measurements, with the high sensitivity and the high temporal (sub-millisecond) and spatial (sub-micrometer) resolution typical of photoluminescence spectroscopy. Complex 1 can be seen as a metal nanoparticle composed of five copper atoms bound to three highly conjugated dianionic cationic ligands (EtNC(S)PPh2NPPh2C(S)NEt) ; Figure 1A). 14] Its absorption spectrum presents a broad and unstructured band below 450 nm (Figure 2A). The system is luminescent in all phases, both at room temperature and at 77 K (Figure 2B) and no dependence on the solvent was observed. A summary of the photophysical properties is shown in Table 1.
Talanta | 2009
Larisa Lvova; Eugenio Martinelli; Francesca Dini; Alberto Bergamini; Roberto Paolesse; Corrado Di Natale; Arnaldo D’Amico
The Electronic tongue (ET) composed of different kind of potentiometric chemical sensors has been applied for the detection of urinary system dysfunctions and creatinine levels. The creatinine contents evaluated by ET were compared with those obtained by automated Jaffes method and GC-MS, obtaining a satisfying agreement for both methods. Partial least square regression discriminate analysis (PLS-DA) and feed forward back-propagation neural network (FFBP NN) classified 51 urine specimens from healthy volunteers in four classes, according to the creatinine content, showing that both techniques can satisfactorily differentiate urines according to this parameter. The best accuracy result of 92.2% correct classification of unknown samples was achieved with FFBP NN. Moreover, the possibility of ET system to distinguish between urine samples of healthy patients, and those with malignant and non-malignant tumor diagnosis of bladder has been shown.
Nanotechnology | 2009
Francesca Dini; Eugenio Martinelli; Giuseppe Pomarico; Roberto Paolesse; Donato Monti; Daniel Filippini; Arnaldo D'Amico; Ingemar Lundström; Corrado Di Natale
Nanostructured molecular assemblies may provide additional sensing properties not found in other arrangements of the same basic constituents. Among three-dimensional structures, nanotubes are particularly appealing for applications as chemical sensors, because of the potential inclusion of different guests inside the cavity or the induced modification of the skeletal interaction after analyte binding. Porphyrins are a class of compounds characterized by brilliant sensing properties, appearing also in non-ordered solid-state aggregates. In recent years, it was reported that aggregation of oppositely charged porphyrins led to the formation of self-assembled nanotubes and in this paper their sensing properties, both in solution and in the solid state, have been investigated. The interactions of porphyrin nanotubes with guest molecules have been monitored by following the changes in their UV-vis spectra. The results obtained have been exploited to build up a sensing platform based on a computer screen as a light source and a digital camera as detector. Porphyrin nanostructures exhibited an enhanced sensitivity to different compounds with respect to those shown by single porphyrin subunits. The reason for the increased sensitivity may be likely found in an additional sensing mechanism related to the modulation of the strength of the forces that keep the supramolecular ensemble together.
PLOS ONE | 2012
Emanuela Guerra; Rossano Lattanzio; Rossana La Sorda; Francesca Dini; Gian Mario Tiboni; Mauro Piantelli; Saverio Alberti
Congenital tufting enteropathy (CTE) is a life-threatening hereditary disease that is characterized by enteric mucosa tufting degeneration and early onset, severe diarrhea. Loss-of-function mutations of the human EPCAM gene (TROP1, TACSTD1) have been indicated as the cause of CTE. However, loss of mTrop1/Epcam in mice appeared to lead to death in utero, due to placental malformation. This and indications of residual Trop-1/EpCAM expression in cases of CTE cast doubt on the role of mTrop1/Epcam in this disease. The aim of this study was to determine the role of TROP1/EPCAM in CTE and to generate an animal model of this disease for molecular investigation and therapy development. Using a rigorous gene-trapping approach, we obtained mTrop1/Epcam -null (knockout) mice. These were born alive, but failed to thrive, and died soon after birth because of hemorrhagic diarrhea. The intestine from the mTrop1/Epcam knockout mice showed intestinal tufts, villous atrophy and colon crypt hyperplasia, as in human CTE. No structural defects were detected in other organs. These results are consistent with TROP1/EPCAM loss being the cause of CTE, thus providing a viable animal model for this disease, and a benchmark for its pathogenetic course. In the affected enteric mucosa, E-cadherin and β-catenin were shown to be dysregulated, leading to disorganized transition from crypts to villi, with progressive loss of membrane localization and increasing intracellular accumulation, thus unraveling an essential role for Trop-1/EpCAM in the maintenance of intestinal architecture and functionality. Supporting information is available for this article.
Topics in Current Chemistry | 2010
Roberto Paolesse; Donato Monti; Francesca Dini; Corrado Di Natale
Fluorescence-based cross reactive sensor arrays have experienced significant development in the last decade because of the advantages that they can offer with respect to other transduction mechanisms, in terms of the usual performance parameters such as sensitivity, selectivity and so on. From this point of view, a great impulse to this development has been due to the realization of novel transduction platforms, which has also taken advantage of the development of consumer electronics such as digital scanners, cameras, and screens, allowing the realization of low cost sensing layers suitable for many practical applications. This possibility, combined with continuous optimization of sensing material properties, the possible preparation of arrays with a high number of individual sensing elements and pattern recognition data analysis, has led to novel opportunities for the creation of luminescence based sensor arrays with improved capabilities. Herein we report on the development of these devices witnessed in the last decade, dividing the developed devices according to their exploitation in gaseous or in solution phase.
Analytical and Bioanalytical Chemistry | 2015
Francesca Dini; Gabriele Magna; Eugenio Martinelli; Giuseppe Pomarico; Corrado Di Natale; Roberto Paolesse; Ingemar Lundström
AbstractHigh sensitivity and cross-selectivity are mandatory properties for sensor arrays. Although metalloporphyrins and pH indicators are among the most common and appropriate choices for the preparation of optical sensor arrays, the sensitivity spectrum of these dyes is limited to those analytes able to induce an optical response. To extend the receptive field of optical sensors, we explore the design of composite materials, where the molecular interaction among the subunits enriches their sensing working mechanisms. We demonstrate that blends of single metalloporphyrins and pH indicators, tested with a transduction apparatus based on ubiquitous and easily available hardware, can be endowed with sensing properties wider than those of single constituents, enabling the recognition of a broad range of volatiles. Graphical abstractBlends of single metalloporphyrins and pH indicators, tested with a transduction apparatus based on ubiquitous and easily available hardware, can be endowed with sensing properties wider than those of single constituents, enabling the recognition of a broad range of volatiles.
PLOS ONE | 2013
Francesca Dini; Rosamaria Capuano; Tillan Strand; Anna-Christina Ek; Margareta Lindgren; Roberto Paolesse; Corrado Di Natale; Ingemar Lundström
Since almost every fifth patient treated in hospital care develops pressure ulcers, early identification of risk is important. A non-invasive method for the elucidation of endogenous biomarkers related to pressure ulcers could be an excellent tool for this purpose. We therefore found it of interest to determine if there is a difference in the emissions of volatiles from compressed and uncompressed tissue. The ultimate goal is to find a non-invasive method to obtain an early warning for the risk of developing pressure ulcers for bed-ridden persons. Chemical analysis of the emissions, collected in compresses, was made with gas-chromatography – mass spectrometry and with a chemical sensor array, the so called electronic nose. It was found that the emissions from healthy and hospitalized persons differed significantly irrespective of the site. Within each group there was a clear difference between the compressed and uncompressed site. Peaks that could be certainly deemed as markers of the compression were, however, not identified. Nonetheless, different compounds connected to the application of local mechanical pressure were found. The results obtained with GC-MS reveal the complexity of VOC composition, thus an array of non-selective chemical sensors seems to be a suitable choice for the analysis of skin emission from compressed tissues; it may represent a practical instrument for bed side diagnostics. Results show that the adopted electronic noses are likely sensitive to the total amount of the emission rather than to its composition. The development of a gas sensor-based device requires then the design of sensor receptors adequate to detect the VOCs bouquet typical of pressure. This preliminary experiment evidences the necessity of studies where each given person is followed for a long time in a ward in order to detect the insurgence of specific VOCs pattern changes signalling the occurrence of ulcers.
Analyst | 2010
Francesca Dini; Daniel Filippini; Roberto Paolesse; Arnaldo D'Amico; Ingemar Lundström; Corrado Di Natale
Physiological investigations suggest that the olfactory mucosa probably plays an ancillary role in the recognition of odours introducing a sort of chromatographic separation that, together with the zonal distribution of olfactory receptors, gives place to selective spatio-temporal response patterns. It has been recently suggested that this behaviour may be simulated by chemical sensors embedded in continuous polymer layers. In this paper, in analogy to the biology of olfaction, a simple and compact platform able to separate and detect gases and vapours on the basis of their diffusion properties is proposed. In such a system, broadly selective colour indicators, such as metalloporphyrins, are embedded in continuous layers of polymers with different sorption properties. The exposure to various alcohols and amines shows that the porphyrins are mainly responsible for the recognition of the molecular family, while the occurring spatio-temporal signal patterns make possible the identification of the individual chemical species.
Analytical and Bioanalytical Chemistry | 2012
Francesca Dini; Eugenio Martinelli; Roberto Paolesse; Daniel Filippini; Detlev Schild; Ingemar Lundström; Corrado Di Natale
Natural olfaction suggests that numerous replicas of small sensors can achieve large sensitivity. This concept of sensor redundancy can be exploited by use of optical chemical sensors whose use of image sensors enables the simultaneous measurement of several spatially distributed indicators. Digital image sensors split the framed scene into hundreds of thousands of pixels each corresponding to a portion of the sensing layer. The signal from each pixel can be regarded as an independent sensor, which leads to a highly redundant sensor array. Such redundancy can eventually be exploited to increase the signal-to-noise ratio. In this paper we report an algorithm for reduction of the noise of pixel signals. For this purpose, the algorithm processes the output of groups of pixels whose signals share the same time behavior, as is the case for signals related to the same indicator. To define these groups of pixels, unsupervised clustering, based on classification of the indicator colors, is proposed here. This approach to signal processing is tested in experiments on the chemical sensitivity of replicas of eight indicators spotted on to a plastic substrate. Results show that the groups of pixels can be defined independently of the geometrical arrangement of the sensing spots, and substantial improvement of the signal-to-noise ratio is obtained, enabling the detection of volatile compounds at any location on the distributed sensing layer.
Archive | 2014
Corrado Di Natale; Francesca Dini; Andrea Scozzari
Electroanalytical methods are a common tool for the assessment of chemical peculiarities of aqueous solutions. Also, the analysis of water based on optical sensors is a mature field of research, which already led to industrial applications and standard laboratory practices. Nevertheless, scientific literature is still offering new sensor techniques and innovative measurement approaches in both fields. In particular, for fast characterisation of liquids and change detection applications in a continuous monitoring context, the technology of taste sensors based on electrochemical techniques is still witnessing a growing interest. Such devices are often defined as “electronic tongues” or “e-tongues”. In addition, emerging inexpensive and portable devices with optical-sensing capabilities can be used for monitoring applications with a novel approach. This chapter gives an overview of recent techniques developed in both fields and presents several potential applications and case studies that deal with the context of water quality assessment. A brief introduction about the basics of each measurement technology, even if not exhaustive, is also provided.