Francesca E. Mackenzie
UCL Institute of Ophthalmology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francesca E. Mackenzie.
Proceedings of the National Academy of Sciences of the United States of America | 2003
Marika Charalambous; Florentia M. Smith; William R. Bennett; Tracey E. Crew; Francesca E. Mackenzie; Andrew Ward
To investigate the function of the Grb10 adapter protein, we have generated mice in which the Grb10 gene was disrupted by a gene-trap insertion. Our experiments confirm that Grb10 is subject to genomic imprinting with the majority of Grb10 expression arising from the maternally inherited allele. Consistent with this, disruption of the maternal allele results in overgrowth of both the embryo and placenta such that mutant mice are at birth ≈30% larger than normal. This observation establishes that Grb10 is a potent growth inhibitor. In humans, GRB10 is located at chromosome 7p11.2–p12 and has been associated with Silver–Russell syndrome, in which ≈10% of those affected inherit both copies of chromosome 7 from their mother. Our results indicate that changes in GRB10 dosage could, in at least some cases, account for the severe growth retardation that is characteristic of Silver–Russell syndrome. Because Grb10 is a signaling protein capable of interacting with tyrosine kinase receptors, we tested genetically whether Grb10 might act downstream of insulin-like growth factor 2, a paternally expressed growth-promoting gene. The result indicates that Grb10 action is essentially independent of insulin-like growth factor 2, providing evidence that imprinting acts on at least two major fetal growth axes in a manner consistent with parent–offspring conflict theory.
Development | 2012
Francesca E. Mackenzie; Christiana Ruhrberg
Vascular endothelial growth factor A (VEGF-A) is best known for its essential roles in blood vessel growth. However, evidence has emerged that VEGF-A also promotes a wide range of neuronal functions, both in vitro and in vivo, including neurogenesis, neuronal migration, neuronal survival and axon guidance. Recent studies have employed mouse models to distinguish the direct effects of VEGF on neurons from its indirect, vessel-mediated effects. Ultimately, refining our knowledge of VEGF signalling pathways in neurons should help us to understand how the current use of therapeutics targeting the VEGF pathway in cancer and eye disease might be expanded to promote neuronal health and nerve repair.
Cell | 2015
Anne-Laure Cattin; Jemima J. Burden; Lucie Van Emmenis; Francesca E. Mackenzie; Julian J.A. Hoving; Noelia Garcia Calavia; Yanping Guo; Maeve McLaughlin; Laura H. Rosenberg; Victor Quereda; Denisa Jamecna; Ilaria Napoli; Simona Parrinello; Tariq Enver; Christiana Ruhrberg; Alison C. Lloyd
Summary The peripheral nervous system has remarkable regenerative capacities in that it can repair a fully cut nerve. This requires Schwann cells to migrate collectively to guide regrowing axons across a ‘bridge’ of new tissue, which forms to reconnect a severed nerve. Here we show that blood vessels direct the migrating cords of Schwann cells. This multicellular process is initiated by hypoxia, selectively sensed by macrophages within the bridge, which via VEGF-A secretion induce a polarized vasculature that relieves the hypoxia. Schwann cells then use the blood vessels as “tracks” to cross the bridge taking regrowing axons with them. Importantly, disrupting the organization of the newly formed blood vessels in vivo, either by inhibiting the angiogenic signal or by re-orienting them, compromises Schwann cell directionality resulting in defective nerve repair. This study provides important insights into how the choreography of multiple cell-types is required for the regeneration of an adult tissue.
Cell Adhesion & Migration | 2012
Miguel Tillo; Christiana Ruhrberg; Francesca E. Mackenzie
Synapse formation, maintenance and plasticity are critical for the correct function of the nervous system and its target organs. During development, these processes enable the establishment of appropriate neural circuits. During adulthood, they allow adaptation to both physiological and environmental changes. In this review, we discuss emerging roles for two families of classical axon and vascular guidance cues in synaptogenesis and synaptic plasticity, the semaphorins and the vascular endothelial growth factors (VEGFs). Their contribution to synapse formation and function add a new facet to the spectrum of overlapping and complementary roles for these molecules in development, adulthood and disease.
Molecular and Cellular Neuroscience | 2009
Frances Wong; Li Fan; Sara Wells; Robert Hartley; Francesca E. Mackenzie; Oyinlola Oyebode; Rosalind Brown; Derek Thomson; Michael P. Coleman; Gonzalo Blanco; Richard R. Ribchester
We used live imaging by fiber-optic confocal microendoscopy (CME) of yellow fluorescent protein (YFP) expression in motor neurons to observe and monitor axonal and neuromuscular synaptic phenotypes in mutant mice. First, we visualized slow degeneration of axons and motor nerve terminals at neuromuscular junctions following sciatic nerve injury in Wld(S) mice with slow Wallerian degeneration. Protection of axotomized motor nerve terminals was much weaker in Wld(S) heterozygotes than in homozygotes. We then induced covert modifiers of axonal and synaptic degeneration in heterozygous Wld(S) mice, by N-ethyl-N-nitrosourea (ENU) mutagenesis, and used CME to identify candidate mutants that either enhanced or suppressed axonal or synaptic degeneration. From 219 of the F1 progeny of ENU-mutagenized BALB/c mice and thy1.2-YFP16/Wld(S) mice, CME revealed six phenodeviants with suppression of synaptic degeneration. Inheritance of synaptic protection was confirmed in three of these founders, with evidence of Mendelian inheritance of a dominant mutation in one of them (designated CEMOP_S5). We next applied CME repeatedly to living Wld(S) mice and to SOD1(G93A) mice, an animal model of motor neuron disease, and observed degeneration of identified neuromuscular synapses over a 1-4day period in both of these mutant lines. Finally, we used CME to observe slow axonal regeneration in the ENU-mutant ostes mouse strain. The data show that CME can be used to monitor covert axonal and neuromuscular synaptic pathology and, when combined with mutagenesis, to identify genetic modifiers of its progression in vivo.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Sophie Wiszniak; Francesca E. Mackenzie; Peter J. Anderson; Samuela Kabbara; Christiana Ruhrberg; Quenten Schwarz
Significance Craniofacial development is a complex morphogenic event that relies on highly orchestrated interactions between multiple cell types. Since the first description of Meckel’s cartilage in the lower jaw more than 180 years ago, we have come to realize that expansion of this specialized structure underpins correct mandible development. Here we demonstrate that an intricate association between neural crest cells and blood vessels plays an important role in promoting chondrocyte proliferation and expansion of Meckel’s cartilage as a prerequisite of correct mandibular morphogenesis. These findings provide direct insight into the origins and potential treatments of highly prevalent disorders affecting the mandible. Jaw morphogenesis depends on the growth of Meckel’s cartilage during embryogenesis. However, the cell types and signals that promote chondrocyte proliferation for Meckel’s cartilage growth are poorly defined. Here we show that neural crest cells (NCCs) and their derivatives provide an essential source of the vascular endothelial growth factor (VEGF) to enhance jaw vascularization and stabilize the major mandibular artery. We further show in two independent mouse models that blood vessels promote Meckel’s cartilage extension. Coculture experiments of arterial tissue with NCCs or chondrocytes demonstrated that NCC-derived VEGF promotes blood vessel growth and that blood vessels secrete factors to instruct chondrocyte proliferation. Computed tomography and X-ray scans of patients with hemifacial microsomia also showed that jaw hypoplasia correlates with mandibular artery dysgenesis. We conclude that cranial NCCs and their derivatives provide an essential source of VEGF to support blood vessel growth in the developing jaw, which in turn is essential for normal chondrocyte proliferation, and therefore jaw extension.
Human Molecular Genetics | 2009
Francesca E. Mackenzie; Rosario Romero; Debbie Williams; Thomas H. Gillingwater; Helen Hilton; Jim Dick; Joanna Riddoch-Contreras; Frances Wong; Lisa Ireson; Nicola Powles-Glover; Genna Riley; Peter A. Underhill; Tertius Hough; Ruth M. Arkell; Linda Greensmith; Richard R. Ribchester; Gonzalo Blanco
Following a screen for neuromuscular mouse mutants, we identified ostes, a novel N-ethyl N-nitrosourea-induced mouse mutant with muscle atrophy. Genetic and biochemical evidence shows that upregulation of the novel, uncharacterized transient receptor potential polycystic (TRPP) channel PKD1L2 (polycystic kidney disease gene 1-like 2) underlies this disease. Ostes mice suffer from chronic neuromuscular impairments including neuromuscular junction degeneration, polyneuronal innervation and myopathy. Ectopic expression of PKD1L2 in transgenic mice reproduced the ostes myopathic changes and, indeed, caused severe muscle atrophy in Tg(Pkd1l2)/Tg(Pkd1l2) mice. Moreover, double-heterozygous mice (ostes/+, Tg(Pkd1l2)/0) suffer from myopathic changes more profound than each heterozygote, indicating positive correlation between PKD1L2 levels and disease severity. We show that, in vivo, PKD1L2 primarily associates with endogenous fatty acid synthase in normal skeletal muscle, and these proteins co-localize to costameric regions of the muscle fibre. In diseased ostes/ostes muscle, both proteins are upregulated, and ostes/ostes mice show signs of abnormal lipid metabolism. This work shows the first role for a TRPP channel in neuromuscular integrity and disease.
Human Molecular Genetics | 2017
Dimitra Athanasiou; Mònica Aguilà; Chikwado A. Opefi; Kieron South; James Bellingham; Dalila Bevilacqua; Peter M.G. Munro; Naheed Kanuga; Francesca E. Mackenzie; Anastasios Georgiadis; Anna B. Graca; Rachael A. Pearson; Robin R. Ali; Sanae Sakami; Krzysztof Palczewski; Michael Y. Sherman; Philip J. Reeves; Michael E. Cheetham
Abstract Protein misfolding caused by inherited mutations leads to loss of protein function and potentially toxic ‘gain of function’, such as the dominant P23H rhodopsin mutation that causes retinitis pigmentosa (RP). Here, we tested whether the AMPK activator metformin could affect the P23H rhodopsin synthesis and folding. In cell models, metformin treatment improved P23H rhodopsin folding and traffic. In animal models of P23H RP, metformin treatment successfully enhanced P23H traffic to the rod outer segment, but this led to reduced photoreceptor function and increased photoreceptor cell death. The metformin-rescued P23H rhodopsin was still intrinsically unstable and led to increased structural instability of the rod outer segments. These data suggest that improving the traffic of misfolding rhodopsin mutants is unlikely to be a practical therapy, because of their intrinsic instability and long half-life in the outer segment, but also highlights the potential of altering translation through AMPK to improve protein function in other protein misfolding diseases.
In: (Proceedings) The 25th Genetics Society's Mammalian Genetics and Development Workshop. (pp. e1-e1). Cambridge University Press (2015) | 2015
Francesca E. Mackenzie; Quenten Schwarz; Charlotte H. Maden; Kathryn Davidson; Christiana Ruhrberg
In: NEUROMUSCULAR DISORDERS. (pp. S182 - S182). PERGAMON-ELSEVIER SCIENCE LTD (2006) | 2006
Francesca E. Mackenzie; Richard R. Ribchester; Thomas H. Gillingwater; Linda Greensmith; Nicola Powles-Glover; R Gale; Ruth M. Arkell; Gonzalo Blanco