Francesca Fava
University of Reading
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Francesca Fava.
Diabetes | 2007
Patrice D. Cani; Jacques Amar; Miguel A. Iglesias; Marjorie Poggi; Claude Knauf; Delphine Bastelica; Audrey M. Neyrinck; Francesca Fava; Kieran M. Tuohy; Aurélie Waget; Evelyne Delmée; Béatrice Cousin; Thierry Sulpice; Bernard Chamontin; Jean Ferrières; Jean-François Tanti; Glenn R. Gibson; Louis Casteilla; Nathalie M. Delzenne; Marie Christine Alessi; Rémy Burcelin
Diabetes and obesity are two metabolic diseases characterized by insulin resistance and a low-grade inflammation. Seeking an inflammatory factor causative of the onset of insulin resistance, obesity, and diabetes, we have identified bacterial lipopolysaccharide (LPS) as a triggering factor. We found that normal endotoxemia increased or decreased during the fed or fasted state, respectively, on a nutritional basis and that a 4-week high-fat diet chronically increased plasma LPS concentration two to three times, a threshold that we have defined as metabolic endotoxemia. Importantly, a high-fat diet increased the proportion of an LPS-containing microbiota in the gut. When metabolic endotoxemia was induced for 4 weeks in mice through continuous subcutaneous infusion of LPS, fasted glycemia and insulinemia and whole-body, liver, and adipose tissue weight gain were increased to a similar extent as in high-fat–fed mice. In addition, adipose tissue F4/80-positive cells and markers of inflammation, and liver triglyceride content, were increased. Furthermore, liver, but not whole-body, insulin resistance was detected in LPS-infused mice. CD14 mutant mice resisted most of the LPS and high-fat diet–induced features of metabolic diseases. This new finding demonstrates that metabolic endotoxemia dysregulates the inflammatory tone and triggers body weight gain and diabetes. We conclude that the LPS/CD14 system sets the tone of insulin sensitivity and the onset of diabetes and obesity. Lowering plasma LPS concentration could be a potent strategy for the control of metabolic diseases.
Diabetologia | 2007
Patrice D. Cani; Audrey M. Neyrinck; Francesca Fava; Claude Knauf; Rémy Burcelin; Kieran M. Tuohy; Glenn R. Gibson; Nathalie M. Delzenne
Aims/hypothesisRecent evidence suggests that a particular gut microbial community may favour occurrence of the metabolic diseases. Recently, we reported that high-fat (HF) feeding was associated with higher endotoxaemia and lower Bifidobacterium species (spp.) caecal content in mice. We therefore tested whether restoration of the quantity of caecal Bifidobacterium spp. could modulate metabolic endotoxaemia, the inflammatory tone and the development of diabetes.MethodsSince bifidobacteria have been reported to reduce intestinal endotoxin levels and improve mucosal barrier function, we specifically increased the gut bifidobacterial content of HF-diet-fed mice through the use of a prebiotic (oligofructose [OFS]).ResultsCompared with normal chow-fed control mice, HF feeding significantly reduced intestinal Gram-negative and Gram-positive bacteria including levels of bifidobacteria, a dominant member of the intestinal microbiota, which is seen as physiologically positive. As expected, HF-OFS-fed mice had totally restored quantities of bifidobacteria. HF-feeding significantly increased endotoxaemia, which was normalised to control levels in HF-OFS-treated mice. Multiple-correlation analyses showed that endotoxaemia significantly and negatively correlated with Bifidobacterium spp., but no relationship was seen between endotoxaemia and any other bacterial group. Finally, in HF-OFS-treated-mice, Bifidobacterium spp. significantly and positively correlated with improved glucose tolerance, glucose-induced insulin secretion and normalised inflammatory tone (decreased endotoxaemia, plasma and adipose tissue proinflammatory cytokines).Conclusions/interpretationTogether, these findings suggest that the gut microbiota contribute towards the pathophysiological regulation of endotoxaemia and set the tone of inflammation for occurrence of diabetes and/or obesity. Thus, it would be useful to develop specific strategies for modifying gut microbiota in favour of bifidobacteria to prevent the deleterious effect of HF-diet-induced metabolic diseases.
Gut | 2016
Julian Roberto Marchesi; David H. Adams; Francesca Fava; Gerben D. A. Hermes; Gideon M. Hirschfield; Georgina L. Hold; Mohammed Nabil Quraishi; James Kinross; Hauke Smidt; Kieran M. Tuohy; Linda V. Thomas; Erwin G. Zoetendal; Ailsa Hart
Over the last 10–15 years, our understanding of the composition and functions of the human gut microbiota has increased exponentially. To a large extent, this has been due to new ‘omic’ technologies that have facilitated large-scale analysis of the genetic and metabolic profile of this microbial community, revealing it to be comparable in influence to a new organ in the body and offering the possibility of a new route for therapeutic intervention. Moreover, it might be more accurate to think of it like an immune system: a collection of cells that work in unison with the host and that can promote health but sometimes initiate disease. This review gives an update on the current knowledge in the area of gut disorders, in particular metabolic syndrome and obesity-related disease, liver disease, IBD and colorectal cancer. The potential of manipulating the gut microbiota in these disorders is assessed, with an examination of the latest and most relevant evidence relating to antibiotics, probiotics, prebiotics, polyphenols and faecal microbiota transplantation.
British Journal of Nutrition | 2008
Adele Costabile; Annett Klinder; Francesca Fava; Aurora Napolitano; Vincenzo Fogliano; Clare Leonard; Glenn R. Gibson; Kieran M. Tuohy
Epidemiological studies have shown an inverse association between dietary intake of whole grains and the risk of chronic disease. This may be related to the ability to mediate a prebiotic modulation of gut microbiota. However, no studies have been conducted on the microbiota modulatory capability of whole-grain (WG) cereals. In the present study, the impact of WG wheat on the human intestinal microbiota compared to wheat bran (WB) was determined. A double-blind, randomised, crossover study was carried out in thirty-one volunteers who were randomised into two groups and consumed daily 48 g breakfast cereals, either WG or WB, in two 3-week study periods, separated by a 2-week washout period. Numbers of faecal bifidobacteria and lactobacilli (the target genera for prebiotic intake), were significantly higher upon WG ingestion compared with WB. Ingestion of both breakfast cereals resulted in a significant increase in ferulic acid concentrations in blood but no discernible difference in faeces or urine. No significant differences in faecal SCFA, fasting blood glucose, insulin, total cholesterol (TC), TAG or HDL-cholesterol were observed upon ingestion of WG compared with WB. However, a significant reduction in TC was observed in volunteers in the top quartile of TC concentrations upon ingestion of either cereal. No adverse intestinal symptoms were reported and WB ingestion increased stool frequency. Daily consumption of WG wheat exerted a pronounced prebiotic effect on the human gut microbiota composition. This prebiotic activity may contribute towards the beneficial physiological effects of WG wheat.
Genes and Nutrition | 2011
Lorenza Conterno; Francesca Fava; Roberto Viola; Kieran M. Tuohy
Obesity is now considered a major public health concern globally as it predisposes to a number of chronic human diseases. Most developed countries have experienced a dramatic and significant rise in obesity since the 1980s, with obesity apparently accompanying, hand in hand, the adoption of “Western”-style diets and low-energy expenditure lifestyles around the world. Recent studies report an aberrant gut microbiota in obese subjects and that gut microbial metabolic activities, especially carbohydrate fermentation and bile acid metabolism, can impact on a number of mammalian physiological functions linked to obesity. The aim of this review is to present the evidence for a characteristic “obese-type” gut microbiota and to discuss studies linking microbial metabolic activities with mammalian regulation of lipid and glucose metabolism, thermogenesis, satiety, and chronic systemic inflammation. We focus in particular on short-chain fatty acids (SCFA) produced upon fiber fermentation in the colon. Although SCFA are reported to be elevated in the feces of obese individuals, they are also, in contradiction, identified as key metabolic regulators of the physiological checks and controls mammals rely upon to regulate energy metabolism. Most studies suggest that the gut microbiota differs in composition between lean and obese individuals and that diet, especially the high-fat low-fiber Western-style diet, dramatically impacts on the gut microbiota. There is currently no consensus as to whether the gut microbiota plays a causative role in obesity or is modulated in response to the obese state itself or the diet in obesity. Further studies, especially on the regulatory role of SCFA in human energy homeostasis, are needed to clarify the physiological consequences of an “obese-style” microbiota and any putative dietary modulation of associated disease risk.
International Journal of Obesity | 2013
Francesca Fava; Rachel Gitau; Bruce A. Griffin; Glenn R. Gibson; Kieran M. Tuohy; Julie A. Lovegrove
INTRODUCTION AND OBJECTIVES:An obese-type human microbiota with an increased Firmicutes:Bacteroidetes ratio has been described that may link the gut microbiome with obesity and metabolic syndrome (MetS) development. Dietary fat and carbohydrate are modifiable risk factors that may impact on MetS by altering the human microbiome composition. We determined the effect of the amount and type of dietary fat and carbohydrate on faecal bacteria and short chain fatty acid (SCFA) concentrations in people ‘at risk’ of MetS.DESIGN:A total of 88 subjects at increased MetS risk were fed a high saturated fat diet (HS) for 4 weeks (baseline), then randomised onto one of the five experimental diets for 24 weeks: HS; high monounsaturated fat (MUFA)/high glycemic index (GI) (HM/HGI); high MUFA/low GI (HM/LGI); high carbohydrate (CHO)/high GI (HC/HGI); and high CHO/low GI (HC/LGI). Dietary intakes, MetS biomarkers, faecal bacteriology and SCFA concentrations were monitored.RESULTS:High MUFA diets did not affect individual bacterial population numbers but reduced total bacteria and plasma total and LDL-cholesterol. The low fat, HC diets increased faecal Bifidobacterium (P=0.005, for HC/HGI; P=0.052, for HC/LGI) and reduced fasting glucose and cholesterol compared to baseline. HC/HGI also increased faecal Bacteroides (P=0.038), whereas HC/LGI and HS increased Faecalibacterium prausnitzii (P=0.022 for HC/HGI and P=0.018, for HS). Importantly, changes in faecal Bacteroides numbers correlated inversely with body weight (r=−0.64). A total bacteria reduction was observed for high fat diets HM/HGI and HM/LGI (P=0.023 and P=0.005, respectively) and HS increased faecal SCFA concentrations (P<0.01).CONCLUSION:This study provides new evidence from a large-scale dietary intervention study that HC diets, irrespective of GI, can modulate human faecal saccharolytic bacteria, including bacteroides and bifidobacteria. Conversely, high fat diets reduced bacterial numbers, and in the HS diet, increased excretion of SCFA, which may suggest a compensatory mechanism to eliminate excess dietary energy.
Proceedings of the Nutrition Society | 2014
Kieran M. Tuohy; Francesca Fava; Roberto Viola
The human gut microbiota has been identified as a possible novel CVD risk factor. This review aims to summarise recent insights connecting human gut microbiome activities with CVD and how such activities may be modulated by diet. Aberrant gut microbiota profiles have been associated with obesity, type 1 and type 2 diabetes and non-alcoholic fatty liver disease. Transfer of microbiota from obese animals induces metabolic disease and obesity in germ-free animals. Conversely, transfer of pathogen-free microbiota from lean healthy human donors to patients with metabolic disease can increase insulin sensitivity. Not only are aberrant microbiota profiles associated with metabolic disease, but the flux of metabolites derived from gut microbial metabolism of choline, phosphatidylcholine and l-carnitine has been shown to contribute directly to CVD pathology, providing one explanation for increased disease risk of eating too much red meat. Diet, especially high intake of fermentable fibres and plant polyphenols, appears to regulate microbial activities within the gut, supporting regulatory guidelines encouraging increased consumption of whole-plant foods (fruit, vegetables and whole-grain cereals), and providing the scientific rationale for the design of efficacious prebiotics. Similarly, recent human studies with carefully selected probiotic strains show that ingestion of viable microorganisms with the ability to hydrolyse bile salts can lower blood cholesterol, a recognised risk factor in CVD. Taken together such observations raise the intriguing possibility that gut microbiome modulation by whole-plant foods, probiotics and prebiotics may be at the base of healthy eating pyramids advised by regulatory agencies across the globe. In conclusion, dietary strategies which modulate the gut microbiota or their metabolic activities are emerging as efficacious tools for reducing CVD risk and indicate that indeed, the way to a healthy heart may be through a healthy gut microbiota.
British Journal of Nutrition | 2007
Francesca Fava; Harri Mäkivuokko; Hilkka Siljander-Rasi; Heli Putaala; Kirsti Tiihonen; Julian Stowell; Kieran M. Tuohy; Glenn R. Gibson; Nina Rautonen
Dietary fibre has been proposed to decrease risk for colon cancer by altering the composition of intestinal microbes or their activity. In the present study, the changes in intestinal microbiota and its activity, and immunological characteristics, such as cyclo-oxygenase (COX)-2 gene expression in mucosa, in pigs fed with a high-energy-density diet, with and without supplementation of a soluble fibre (polydextrose; PDX) (30 g/d) were assessed in different intestinal compartments. PDX was gradually fermented throughout the intestine, and was still present in the distal colon. Irrespective of the diet throughout the intestine, of the four microbial groups determined by fluorescent in situ hybridisation, lactobacilli were found to be dominating, followed by clostridia and Bacteroides. Bifidobacteria represented a minority of the total intestinal microbiota. The numbers of bacteria increased approximately ten-fold from the distal small intestine to the distal colon. Concomitantly, also concentrations of SCFA and biogenic amines increased in the large intestine. In contrast, concentrations of luminal IgA decreased distally but the expression of mucosal COX-2 had a tendency to increase in the mucosa towards the distal colon. Addition of PDX to the diet significantly changed the fermentation endproducts, especially in the distal colon, whereas effects on bacterial composition were rather minor. There was a reduction in concentrations of SCFA and tryptamine, and an increase in concentrations of spermidine in the colon upon PDX supplementation. Furthermore, PDX tended to decrease the expression of mucosal COX-2, therefore possibly reducing the risk of developing colon cancer-promoting conditions in the distal intestine.
Journal of Agricultural and Food Chemistry | 2014
Santosh Lamichhane; Christian Clement Yde; Sofia D. Forssten; Arthur C. Ouwehand; Markku Saarinen; Henrik Max Jensen; Glenn R. Gibson; Robert A. Rastall; Francesca Fava; Hanne Christine Bertram
The aim of the present study was to elucidate the impact of polydextrose PDX an soluble fiber, on the human fecal metabolome by high-resolution nuclear magnetic resonance (NMR) spectroscopy-based metabolomics in a dietary intervention study (n = 12). Principal component analysis (PCA) revealed a strong effect of PDX consumption on the fecal metabolome, which could be mainly ascribed to the presence of undigested fiber and oligosaccharides formed from partial degradation of PDX. Our results demonstrate that NMR-based metabolomics is a useful technique for metabolite profiling of feces and for testing compliance to dietary fiber intake in such trials. In addition, novel associations between PDX and the levels of the fecal metabolites acetate and propionate could be identified. The establishment of a correlation between the fecal metabolome and levels of Bifidobacterium (R(2) = 0.66) and Bacteroides (R(2) = 0.46) demonstrates the potential of NMR-based metabolomics to elucidate metabolic activity of bacteria in the gut.
Diabetes | 2016
Nicola Basso; Emanuele Soricelli; Lidia Castagneto-Gissey; Giovanni Casella; Davide Albanese; Francesca Fava; Claudio Donati; Kieran M. Tuohy; Giulia Angelini; Federica La Neve; Anna Severino; Virginia Kamvissi-Lorenz; Andrea L. Birkenfeld; Stefan R. Bornstein; Melania Manco; Geltrude Mingrone
Metabolic surgery improves insulin resistance and type 2 diabetes possibly because of weight loss. We performed a novel sleeve gastrectomy in rats that resects ∼80% of the glandular portion, leaving the forestomach almost intact (glandular gastrectomy [GG]) and compared subsequent metabolic remodeling with a sham operation. GG did not affect body weight, at least after 10 weeks; improved hepatic and peripheral insulin sensitivity likely through increased Akt, glycogen synthase kinase 3, and AMPK phosphorylation; and reduced ectopic fat deposition and hepatic glycogen overaccumulation. Body adipose tissue was redistributed, with reduction of intraabdominal fat. We found a reduction of circulating ghrelin levels, increased GLP-1 plasma concentration, and remodeling of gut microbiome diversity characterized by a lower relative abundance of Ruminococcus and a higher relative abundance of Lactobacillus and Collinsella. These data suggest that at least in rat, the glandular stomach plays a central role in the improvement of insulin resistance, even if obesity persists. GG provides a new model of the metabolically healthy obese phenotype.