Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Francesca Gelfo is active.

Publication


Featured researches published by Francesca Gelfo.


Brain Research Reviews | 2009

On whether the environmental enrichment may provide cognitive and brain reserves

Laura Petrosini; Paola De Bartolo; Francesca Foti; Francesca Gelfo; Debora Cutuli; Maria Leggio; Laura Mandolesi

The construct of brain and cognitive reserves holds that cognitive enrichment fosters the development of neuroplasticity properties, which permit normal cognitive functioning even in the presence of brain pathology. Interpreting the experience-dependent increase of neuronal connectivity and efficiency in the light of the reserve theory provides an interesting approach for explaining the maintenance of cognitive function observed in some subjects affected by neurodegenerative disorders. In fact, mental and physical engagement with complex environments strengthens synaptic connectivity and provides the means by which preexisting neuronal networks are efficiently utilized and alternative networks are recruited to meet environmental demands and to cope with brain damage. There is considerable interest in determining the biological factors that allow the development of these reserves. To investigate these factors, it is possible to model situations of environmental enrichment in animals that parallel human cognitive enrichment. Experimental findings indicate that early onset and extended housing in an environment with enhanced sensorimotor, cognitive, and social stimulations results in significant changes in brain biochemistry, synaptic connectivity, and neuronal function in enriched animals. These changes provide the groundwork for the improvement of behavioral performance and maintenance of performance following brain damage. As this is the fundamental assumption of the reserve hypothesis, it is possible that as human educational attainment and occupational status, environmental enrichment develops reserves to be spent in the case of a subsequent lesion.


Journal of Neuroinflammation | 2012

A single intraperitoneal injection of endotoxin in rats induces long-lasting modifications in behavior and brain protein levels of TNF-α and IL-18

Paola Bossù; Debora Cutuli; Ilaria Palladino; Paola Caporali; Francesco Angelucci; Daniela Laricchiuta; Francesca Gelfo; Paola De Bartolo; Carlo Caltagirone; Laura Petrosini

BackgroundSystemic inflammation might cause neuronal damage and sustain neurodegenerative diseases and behavior impairment, with the participation of pro-inflammatory cytokines, like tumor necrosis factor (TNF)-α and interleukin (IL)-18. However, the potential contribution of these cytokines to behavioral impairment in the long-term period has not been fully investigated.MethodsWistar rats were treated with a single intraperitoneal injection of LPS (5 mg/kg) or vehicle. After 7 days and 10 months, the animal behavior was evaluated by testing specific cognitive functions, as mnesic, discriminative, and attentional functions, as well as anxiety levels. Contextually, TNF-α and IL-18 protein levels were measured by ELISA in defined brain regions (that is, frontal cortex, hippocampus, striatum, cerebellum, and hypothalamus).ResultsBehavioral testing demonstrated a specific and persistent cognitive impairment characterized by marked deficits in reacting to environment modifications, possibly linked to reduced motivational or attentional deficits. Concomitantly, LPS induced a TNF-α increase in the hippocampus and frontal cortex (from 7 days onward) and cerebellum (only at 10 months). Interestingly, LPS treatment enhanced IL-18 expression in these same areas only at 10 months after injection.ConclusionsOverall, these results indicate that the chronic neuroinflammatory network elicited by systemic inflammation involves a persistent participation of TNF-α accompanied by a differently regulated contribution of IL-18. This leads to speculation that, though with still unclear mechanisms, both cytokines might take part in long-lasting modifications of brain functions, including behavioral alteration.


Neurobiology of Learning and Memory | 2009

Layer and regional effects of environmental enrichment on the pyramidal neuron morphology of the rat.

Francesca Gelfo; Paola De Bartolo; Angela Giovine; Laura Petrosini; Maria Leggio

The environmental enrichment (EE) paradigm is widely used to study experience-dependent brain plasticity. Several studies have investigated functional and anatomical EE effects. However, as EE effects are different according to cerebral region, cortical layer, dendritic field and morphological index considered, a univocal characterization of neuronal morphological changes following rearing in enriched environments is lacking. Aim of the present study was to characterize in the rat the effects of EE on the neuronal morphology of frontal and parietal cortical regions, the main target areas of the stimulation provided by the paradigm. Male Wistar rats were housed in an enriched environment for 3.5 months from the 21st postnatal day. For the morphological analysis, biotinylated dextran amine (BDA)-labeled pyramidal neurons were selected from frontal (M1-M2) and parietal (S1-S2) cortical layers III and V. Apical and basal dendritic branching and spines were analyzed using the Sholl method. Results showed that EE increased branching and spines in both layers of frontal cortex, but had a greater effect on apical arborization. In parietal cortex, EE significantly affected branching and spines in layer III but not layer V neurons, in which only a tendency to be influenced by the rearing conditions was observed in basal arborization. It is hypothesized that these multifaceted morphological EE effects are connected to the heavy involvement of a sensory-motor circuit engaged in the guidance of voluntary action and in motor learning activated by EE stimulation.


Journal of Alzheimer's Disease | 2008

Environmental enrichment provides a cognitive reserve to be spent in the case of brain lesion

Laura Mandolesi; Paola De Bartolo; Francesca Foti; Francesca Gelfo; Francesca Federico; Maria Leggio; Laura Petrosini

To experimentally verify the reserve hypothesis, the influence of rearing conditions on the cognitive performances and on dendritic spines following basal forebrain lesions was analyzed. Adult rats reared in enriched or standard conditions were depleted of the cholinergic projection to the neocortex by 192 IgG-saporin injection into Ch4 region of basal forebrain. Their performance in spatial tasks was compared with that of intact animals reared in analogous conditions. Furthermore, number and density of dendritic spines of the layer-III parietal pyramidal neurons were analyzed. Cholinergic depletion of forebrain cortex resulted in impaired performances in most behavioral tasks in animals reared in standard conditions. Conversely, the enriched lesioned animals did not exhibit most deficits evoked by cholinergic lesion, even if some deficits, such as perseverative behaviors, were still present. The pyramidal neurons exhibited an increased spine number and density in the lesioned animals reared in standard conditions. In the enriched lesioned animals, the enhancement of spine number and density elicited by the rearing condition was fully maintained but not further increased in the presence of the lesion. Thus, rearing in an enriched environment results in the development of brain and cognitive reserves that reduce the cognitive impairment following forebrain lesions.


Brain and Cognition | 2014

BDNF serum levels in subjects developing or not post-traumatic stress disorder after trauma exposure

Francesco Angelucci; Valerio Ricci; Francesca Gelfo; Giovanni Martinotti; Marcella Brunetti; Gianna Sepede; Maria Salvina Signorelli; Eugenio Aguglia; Mauro Pettorruso; Federica Vellante; Massimo Di Giannantonio; Carlo Caltagirone

Post-traumatic stress disorder (PTSD) is a syndrome resulting from exposure to a severe traumatic event that poses threatened death or injury and produces intense fear and helplessness. The neural structures implicated in PTSD development belong to the limbic system, an important region for emotional processing. Brain-derived neurotrophic factor (BDNF) is a neurotrophin that serves as survival factor for selected populations of central nervous system (CNS) neurons and plays a role in the limbic system by regulating synaptic plasticity, memory processes and behavior. Impaired BDNF production in the brain can lead to a variety of CNS dysfunctions including symptoms associated with PTSD. However, so far fewer studies have investigated this neurotrophin in patients with PTSD. Furthermore, given the multiple role of BDNF in various CNS disorders, it cannot be excluded that traumatic events per se may influence neurotrophin levels, without a direct association to the PTSD syndrome. To elucidate these issues, in this study we analyzed BDNF serum levels in two groups of subjects: patients with trauma exposure who developed PTSD, and subjects with trauma exposure who did not develop PTSD. We found that BDNF serum levels were lower in PTSD patients as compared to related control subjects. Thus, these data suggest that BDNF might be involved in pathophysiology of PTSD and consequently therapeutic approaches aimed at restoring BDNF serum levels may be beneficial to this pathology.


Psychopharmacology | 2011

Chronic ketamine use increases serum levels of brain-derived neurotrophic factor.

Valerio Ricci; Giovanni Martinotti; Francesca Gelfo; Federico Tonioni; Carlo Caltagirone; Pietro Bria; Francesco Angelucci

RationaleKetamine is a non-competitive N-methyl-d-aspartate (NMDA) receptor antagonist which interferes with the action of excitatory amino acids (EAAs) including glutamate and aspartate. The use of ketamine at subanaesthetic doses has increased because of its psychotomimetic properties. However, long-term ketamine abuse may interfere with memory processes and inhibit the induction of long-term potentiation (LTP) in the hippocampus, an effect probably mediated by its NMDA antagonist action. Neurotrophins such as brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) serve as survival factors for selected populations of central nervous system neurons, including cholinergic and dopaminergic neurons. In addition, neurotrophins, particularly BDNF, may regulate LTP in the hippocampus and influence synaptic plasticity.ObjectivesThe purpose of this study was to test the hypothesis that ketamine use in humans is associated with altered serum levels of neurotrophins.MethodsWe measured by enzyme-linked immunosorbent assay the NGF and BDNF serum levels in two groups of subjects: frequent ketamine users and healthy subjects.ResultsOur data show that BDNF serum levels were increased in chronic ketamine users as compared to healthy subjects, while NGF levels were not affected by ketamine use.ConclusionThese findings suggest that chronic ketamine intake is associated with increases in BDNF serum levels in humans. Other studies are needed to explore the pharmacological and molecular mechanism by which ketamine, and/or other NMDA antagonists, may induce modification in the production and utilization of BDNF and alter normal brain function.


Neuroscience | 2008

Environmental enrichment mitigates the effects of basal forebrain lesions on cognitive flexibility

P. De Bartolo; Maria Leggio; Laura Mandolesi; Francesca Foti; Francesca Gelfo; Fabio Ferlazzo; Laura Petrosini

The aim of the present study was to investigate whether basal forebrain lesions were able to impair a task requiring cognitive flexibility abilities and analyzing the effect of the rearing in an enriched environment on such form of flexibility in rats with or without basal forebrain cholinergic lesions. In adult rats reared in enriched or standard conditions of the cholinergic projection to the neocortex damage was inflicted by 192 IgG-saporin injection into Ch4 region of basal forebrain. Their performance was compared with those of intact animals reared in analogous conditions in a four-choice serial learning task which taps flexibility in adapting to changing response rules. The results underlined the crucial role of the basal forebrain in mediating cognitive flexibility behaviors and revealed that the increase in social interactions, cognitive stimulation and physical activity of the rearing in enriched environment attenuated impairments caused by the cholinergic lesion. These findings demonstrate that rearing in an enriched environment can improve the ability to cope with brain damage suffered in adulthood.


Neurorehabilitation and Neural Repair | 2011

Enriched environment improves motor function and increases neurotrophins in hemicerebellar lesioned rats.

Francesca Gelfo; Debora Cutuli; Francesca Foti; Daniela Laricchiuta; Paola De Bartolo; Carlo Caltagirone; Laura Petrosini; Francesco Angelucci

Background. Environmental enrichment (EE) defined as “a combination of complex inanimate and social stimulation” influences brain function and anatomy by enhancing sensory, cognitive, motor, and social stimulation. The beneficial effects of EE in the presence of brain damage have been partially attributed to upregulation of neurotrophins, proteins involved in neuronal survival and in activity-dependent plasticity. Objective. The authors tested the hypothesis that EE may have advantageous effects on recovery of motor function after cerebellar damage, associated with changes in local neurotrophin production. Methods. They performed a hemicerebellectomy in rats previously exposed to EE or reared in standard conditions. The time course of compensation of motor symptoms was analyzed in both lesioned groups. Then, the local production of the nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) in the spared hemicerebellum and other extracerebellar regions was evaluated. Results. Long-term exposure to EE accelerated the motor recovery in hemicerebellectomized rats and elicited an increase in NGF levels in the spared hemicerebellum, as compared with nonenriched lesioned and control rats. BDNF levels were higher in hemicerebellectomized rats but not influenced by EE. In the frontal cortex, both NGF and BDNF levels were upregulated in hemicerebellectomized enriched rats as compared with hemicerebellectomized nonenriched and control rats. Conclusions. This study suggests that the beneficial effects of EE on motor symptoms after cerebellar damage may be, at least partly, because of modulation of neurotrophic proteins involved in the regeneration processes.


Journal of Alzheimer's Disease | 2009

Cognitive performances of cholinergically depleted rats following chronic donepezil administration

Debora Cutuli; Francesca Foti; Laura Mandolesi; Paola De Bartolo; Francesca Gelfo; Francesca Federico; Laura Petrosini

Since acute and chronic administration of the acetylcholinesterase inhibitors, namely donepezil, improves cognitive functions in patients afflicted by mild to moderate dementia and reverses memory deficits in experimental models of learning and memory, it seemed interesting to assess the effects of chronic donepezil treatment on cognitive functions in adult rats with forebrain cholinergic depletion. Lesions were performed by means of intracerebroventricular injections of the immunotoxin 192 IgG-saporin. The cognitive functions of lesioned animals treated or not treated with donepezil were compared with those of intact animals. Cholinergic depletion affected working memory functions, weakened procedural competencies, affected the acquisition of localizing knowledge, and evoked remarkable compulsive and perseverative behaviors. In lesioned animals, chronic donepezil treatment ameliorated localizatory capabilities, performances linked to cognitive flexibility and procedural abilities. Furthermore, it attenuated compulsive deficits. The present data indicate positive effects of chronic donepezil treatment on specific cognitive performances, suggesting that an aimed use of acetylcholinesterase inhibitors, targeting some symptoms more than others, may be beneficial in the case of cholinergic hypofunction. The animal model used in the present research may provide an efficient method for analyzing cognition-enhancing drugs before clinical trials.


The Cerebellum | 2011

Exposure to an Enriched Environment Accelerates Recovery from Cerebellar Lesion

Francesca Foti; Daniela Laricchiuta; Debora Cutuli; Paola De Bartolo; Francesca Gelfo; Francesco Angelucci; Laura Petrosini

The exposure to enriched environments allows the maintenance of normal cognitive functioning even in the presence of brain pathology. Up until now, clinical and experimental studies have investigated environmental effects mainly on the symptoms linked to the presence of neuro-degenerative diseases, and no study has yet analyzed whether prolonged exposure to complex environments allows modifying the clinical expression and compensation of deficits of cerebellar origin. In animals previously exposed to complex stimulations, the effects of cerebellar lesions have been analyzed to verify whether a prolonged and intense exposure to complex stimulations affected the compensation of motor and cognitive functions following a cerebellar lesion. Hemicerebellectomized or intact animals housed in enriched or standard conditions were administered spatial tests. Postural asymmetries and motor behavior were also assessed. Exposure to the enriched environment almost completely compensated the effects of the hemicerebellectomy. In fact, the motor and cognitive performances of the enriched hemicerebellectomized animals were similar to those of the intact animals. The plastic changes induced by enhanced mental and physical activity seem to provide the development of compensatory responses against the disrupting motor and cognitive consequences of the cerebellar damage.

Collaboration


Dive into the Francesca Gelfo's collaboration.

Top Co-Authors

Avatar

Laura Petrosini

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Paola De Bartolo

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Debora Cutuli

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Carlo Caltagirone

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Francesca Foti

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura Mandolesi

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Lorena Burello

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Nicoletta Croce

University of Rome Tor Vergata

View shared research outputs
Researchain Logo
Decentralizing Knowledge